Advertisement

Bulletin of Volcanology

, 77:20 | Cite as

High-spatial-resolution imagery helps map deposits of the large (VEI 4) 2010 Merapi Volcano eruption and their impact

  • Akhmad SolikhinEmail author
  • Jean-Claude Thouret
  • Soo Chin Liew
  • Avijit Gupta
  • Dewi Sri Sayudi
  • Jean-François Oehler
  • Zeineb Kassouk
Research Article

Abstract

The 26 October–23 November 2010 eruption is Merapi’s largest event (VEI 4) over the past 140 years. We used high-spatial-resolution (HSR) imagery from GeoEye, Pléiades, IKONOS, and SPOT5 satellites to assess the extent and effects of the pyroclastic density currents (PDCs) and subsequent lahars. We have tracked the geomorphic and structural (fracturing) changes of Merapi’s summit crater and dome between 2008 and 2012. The 4 September 2011 GeoEye image shows that due to the explosive eruption, the summit area lost about 10 × 106 m3. The eruption enlarged the SSE-trending Gendol breach to be 1.3 × 0.3 × 0.2 km. The 2010 tephra and PDC deposits covered about 26 km2 in the two catchments of Gendol and Opak Rivers on Merapi’s south flank, i.e., 60–75 % of the total PDC deposit area, with a total bulk volume of 45 × 106 m3. The tephra-fall deposit covered an area of about 1300 km2 with a range in volume of 18–21 × 106 m3. Supervised and object-oriented classification on HSR imagery enables us to map in detail the PDC deposits across the Gendol-Opak catchment. We delineated 16 spectrally and/or texturally distinct units of PDC deposits and compared them with previously published results. They encompass high-energy surge deposits within ca. 8 km of the summit, valley-confined PDC deposits channeled as far as 16.5 km in the Gendol River, and widespread overbank PDC with ash-cloud surge deposits on valley margins.

Additional high-resolution data are provided to map and analyze flooded areas due to lahar activity in 2011–2012 on the south and west flanks. Subsequent overbank lahars impacted selective small areas in the populated ring plain, devastating villages along the Putih River on the southeast flank and the Gendol River. We have analyzed the morphometric parameters (channel cross-sectional capacity, longitudinal rate of channel confinement, and channel sinuosity) of the Gendol-Opak River channels that govern overbank and avulsion of lahars in the ring plain. The paper demonstrates the potential of HSR satellite imagery to outline tephra, PDC, and lahar deposits; map the geomorphic and structural evolution of the summit area of persistently active composite cones; and thus improve hazard assessment for Merapi, a volcano whose summit, slopes, and drainages have changed more since October 2010 than at any other time since 1931.

Keywords

Remote sensing Merapi Eruption Pyroclastic density current Tephra Lahar Hazard 

Notes

Acknowledgments

We would like to thank the reviewers (J-C. Komorowski and S. Charbonnier) for their comments and suggestions, which greatly improved the quality of the paper. The support from several partner institutions is acknowledged: the French Embassy for A. Solikhin’s PhD grant, the ANR RiskNat project for J-C, Thouret fieldwork, CNES for the SPOT5 images, and CRISP-NUS and ICT Asia for the GeoEye images. J. Pallister and J. Griswold (VDAP, USGS) are thanked for consultation and L. Thouret for artwork. This article received the support of the French National Research Agency within the project “Laharisk” (ANR-09-RISK-005), DOMERAPI (ANR-12-BS06-0012), and the CNES-TOSCA Project “Merapi” (2012 and 2014).

Supplementary material

445_2015_908_MOESM1_ESM.pdf (238 kb)
ESM 1 (PDF 237 kb)

References

  1. Andrews BJ, Manga M (2011) Effects of topography on pyroclastic density current runout and formation of coignimbrites. Geology 39(12):1099–1102CrossRefGoogle Scholar
  2. BAPPENAS, BNPB (2011) Rencana aksi rehabilitasi dan rekonstruksi wilayah pasca bencana erupsi Gunung Merapi di Provinsi D.I. Yogyakarta dan Provinsi Jawa Tengah 2011–2013 (The action plan of post-disaster rehabilitation and reconstruction of Merapi volcano eruption in Yogyakarta and Central Java Provinces, 2011–2013). BAPPENAS and BNPB, Jakarta, p 205Google Scholar
  3. Bignami C, Ruch J, Chini M, Neri M, Buongiorno MF, Hidayati S, Sayudi DS, Surono (2013) Pyroclastic density current volume estimation after the 2010 Merapi volcano eruption using X-band SAR. J Volcanol Geotherm Res 261:236–243CrossRefGoogle Scholar
  4. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40:415–418CrossRefGoogle Scholar
  5. Bonadonna C, Houghton BF (2005) Total grain-sized distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456CrossRefGoogle Scholar
  6. BPS (2010) Daerah Istimewa Yogyakarta Dalam Angka, 2010 (Daerah Istimewa Yogyakarta in Figures, 2010). Biro Pusat Statistik (Statistics Bureau) of DI Yogyakarta Province, Yogyakarta, Indonesia, p 560Google Scholar
  7. Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc Lond Mem 27:143Google Scholar
  8. Camus G, Gourgaud A, Mossand-Berthommier PC, Vincent PM (2000) Merapi (Central Java, Indonesia): an outline of the structural and magmatological evolution, with a special emphasis to the major pyroclastic events. J Volcanol Geotherm Res 100:139–163CrossRefGoogle Scholar
  9. Charbonnier S, Gertisser R (2008) Field observations and surface characteristics of pristine block-and-ash flow deposits from the 2006 eruption of Merapi Volcano, Java, Indonesia. J Volcanol Geotherm Res 177:971–982CrossRefGoogle Scholar
  10. Charbonnier SJ, Gertisser R (2011) Deposit architecture and dynamics of the 2006 block-and-ash flows of Merapi Volcano, Java, Indonesia. Sedimentology 58:1573–1612CrossRefGoogle Scholar
  11. Charbonnier SJ, Germa A, Connor CB, Gertisser R, Preece K, Komorowski J-C, Lavigne F, Dixon T, Connor L (2013) Evaluation of the impact of the 2020 pyroclastic density currents at Merapi volcano from high-resolution satellite imagery, field investigation and numerical simulations. J Volcanol Geotherm Res 261:295–315CrossRefGoogle Scholar
  12. Cronin SJ, Lube G, Sayudi DS, Sumarti S, Surono, Subandriyo (2013) Insights into the October–November 2010 Gunung Merapi eruption (Central Java, Indonesia) from the stratigraphy, volume and characteristics of its pyroclastic deposits. J Volcanol Geotherm Res 261:244–259CrossRefGoogle Scholar
  13. de Bélizal E, Lavigne F, Hadmoko DS, Degeai J-P, Dipayana GA, Mutaqin BW, Marfai MA, Coquet M, Mauff BL, Robin A-K, Vidal C, Cholik N, Aisyah N (2013) Rain-triggered lahars following the 2010 eruption of Merapi volcano, Indonesia: a major risk. J Volcanol Geotherm Res 261:330–347CrossRefGoogle Scholar
  14. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167CrossRefGoogle Scholar
  15. Gerstenecker C, Läufer G, Steineck D, Tiede C, Wrobel B (2005) Validation of digital elevation models around Merapi Volcano, Java, Indonesia. Nat Hazards Earth Syst Sci 5(6):863–876CrossRefGoogle Scholar
  16. Gertisser R, Charbonnier SJ, Keller J, Quidelleur X (2012) The geological evolution of Merapi volcano, Central Java, Indonesia. Bull Volcanol 74(5):1213–1233Google Scholar
  17. Global Volcanism Program (2007) Report on Merapi (Indonesia). In: Wunderman R (ed) Bulletin of the Global Volcanism Network, 32:2. Smithsonian Institution, pp 3–8Google Scholar
  18. Jenkins S, Komorowski J-C, Baxter PJ, Spence R, Picquout A, Lavigne F, Surono (2013) The Merapi 2010 eruption: an interdisciplinary impact assessment methodology for studying pyroclastic density current dynamics. J Volcanol Geotherm Res 261:316–329CrossRefGoogle Scholar
  19. Kassouk Z, Thouret J-C, Solikhin A, Gupta A, Liew SC (2014) Object-oriented classification of very high resolution panchromatic imagery for geologic mapping of an active volcano: Semeru volcano, Indonesia. Geomorphology 221:18–33CrossRefGoogle Scholar
  20. Komorowski J-C, Jenkins S, Baxter PJ, Picquout A, Lavigne F, Charbonnier S, Gertisser R, Preece K, Cholik N, Budi-Santoso A, Surono (2013) Paroxysmal dome explosion during the Merapi 2010 eruption: processes and facies relationships of associated high-energy pyroclastic density currents. J Volcanol Geotherm Res 261:260–294CrossRefGoogle Scholar
  21. Lavigne F, Thouret J-C, Suwa H (2000) Lahars at Merapi: an overview. J Volcanol Geotherm Res 100:423–456CrossRefGoogle Scholar
  22. Lube G, Cronin SJ, Thouret J-C, Surono (2011) Kinematic characteristics of pyroclastic density currents at Merapi and controls on their avulsion from natural and engineered channels. Geol Soc Amer Bull 123(5–6):1127–1140CrossRefGoogle Scholar
  23. Mei ETW, Lavigne F, de Bélizal E, Brunstein D, Picquout A, Grancher D, Sartohadi J, Cholik N, Vidal C (2013) Lesson learned from the 2010 evacuation at Merapi Volcano. J Volcanol Geotherm Res 261:348–365CrossRefGoogle Scholar
  24. Pallister JS, Schneider DJ, Griswold JP, Keeler RH, Burton WC, Noyles C, Newhall CG, Ratdomopurbo A (2013) Merapi 2010 eruption—chronology and extrusion rates monitored with satellite radar and used in eruption forecasting. J Volcanol Geotherm Res 261:144–152CrossRefGoogle Scholar
  25. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51(1):1–15CrossRefGoogle Scholar
  26. Sayudi DS, Aisyah N, Juliani Dj, Muzani M (2010) Peta Kawasan Rawan Bencana Gunungapi Merapi, Jawa Tengah dan Daerah Istimewa Yogyakarta 2010 (Merapi Hazard Map, Central Java and Yogyakarta Special Region Provinces). Center for Volcanology and Geological Hazard Mitigation (CVGHM), BandungGoogle Scholar
  27. Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the world, 3rd edn. University of California Press, Berkeley, p 568Google Scholar
  28. Smith GA, Fritz WJ (1989) Volcanic influences on terrestrial sedimentation. Geology 17:375–376CrossRefGoogle Scholar
  29. Solikhin A, Thouret J-C, Gupta A, Harris AJL, Liew SC (2012) Geology, tectonics, and the 2002–2003 eruption of the Semeru volcano, Indonesia: interpreted from high-spatial resolution satellite imagery. Geomorphology 138:364–379CrossRefGoogle Scholar
  30. Surono, Jousset P, Pallister J, Boichu M, Buongiorno MF, Budisantoso A, Costa F, Andreastuti S, Prata F, Schneider D, Clarisse L, Humaida H, Sumarti S, Bignami C, Griswold J, Oppenheimer C, Lavigne F (2012) The 2010 explosive eruption of Java’s merapi volcano—a ‘100-year’ event. J Volcanol Geotherm Res 241–242:121–135CrossRefGoogle Scholar
  31. Thouret J-C, Lavigne F, Kelfoun K, Bronto S (2000) Toward a revised hazard assessment at Merapi volcano, Central Java. J Volcanol Geotherm Res 100:479–502CrossRefGoogle Scholar
  32. Thouret J-C, Gupta A, Lube G, Liew SC, Cronin SJ, Surono (2010) The 2006 pyroclastic deposits of Merapi Volcano, Java, Indonesia: high-spatial resolution IKONOS images and complementary ground based observations. Remote Sens Environ 114:1949–1967CrossRefGoogle Scholar
  33. Voight B, Constantine EK, Siswowidjoyo S, Torley R (2000) Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768–1998. J Volcanol Geotherm Res 100:69–138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Akhmad Solikhin
    • 1
    • 2
    Email author
  • Jean-Claude Thouret
    • 2
  • Soo Chin Liew
    • 3
  • Avijit Gupta
    • 3
    • 4
  • Dewi Sri Sayudi
    • 1
  • Jean-François Oehler
    • 5
  • Zeineb Kassouk
    • 2
  1. 1.Center for Volcanology and Geological Hazard Mitigation, Geological Agency, Ministry of Energy and Mineral ResourcesBandungIndonesia
  2. 2.Laboratoire Magmas et Volcans, Clermont Université, Université Blaise PascalUMR 6524 CNRS, IRD-R163 and CLERVOLCClermont Ferrand CedexFrance
  3. 3.Center for Remote Imaging, Sensing and ProcessingNational University of SingaporeSingaporeSingapore
  4. 4.School of Earth and Environmental SciencesUniversity of WollongongWollongongAustralia
  5. 5.Altran OuestTechnopôle Brest IroiseBrest Cedex 3France

Personalised recommendations