Advertisement

Bulletin of Volcanology

, 77:24 | Cite as

Volcanic, tectonic and mass-wasting processes offshore Terceira Island (Azores) revealed by high-resolution seafloor mapping

  • D. Casalbore
  • C. Romagnoli
  • A. Pimentel
  • R. Quartau
  • D. Casas
  • G. Ercilla
  • A. Hipólito
  • A. Sposato
  • F. L. Chiocci
Research Article

Abstract

Terceira Island, in the Azores Archipelago, lies at the intersection of four submarine volcanic ridges. New high-resolution bathymetric and seismic reflection data have been used to analyze the main volcanic, tectonic and mass-wasting features of the island offshore. Volcanic features such as linear volcanic centers, and pointy and flat-topped cones are mainly concentrated on the narrow western and north-western ridges, characterized by an overall rugged morphology. Fault scarps dominate mainly the broad eastern and south-eastern ridges, which are characterized by an overall smooth and terrace-like morphology. On the eastern ridge, faults form a series of horsts and grabens related to the onshore Lajes Graben. The strikes of the fault scarps, linear volcanic centers and alignment of volcanic cones on the ridges reveal two main structural trends, WNW–ESE and NNW–SSE, consistent with the main tectonic structures observed on the Azores Plateau. In contrast, a large variability of strike was observed in inter-ridge areas, reflecting the relative importance of regional and local stresses in producing these structures. Mass-wasting features are subordinate and mostly represented by hundred meter-wide scars that indent the edge of the insular shelf surrounding the island, apart from two large, deeper scars identified on the southern steep flank of the western ridge. Finally, the remarkable morpho-structural differences between the western and eastern ridges are discussed in the framework of the evolution of the Terceira volcanic edifice and hypothesized to reflect successive stages of ridge evolution.

Keywords

Multibeam bathymetry Morphometry Submarine volcanism Volcanic ridges Tectonic control Terceira Rift 

Notes

Acknowledgments

Data acquisition was conducted within the framework of the project “Features of Azores and Italian Volcanic Islands (FAIVI)”, supported by the European Commission 7th Framework Programme under EUROFLEETS grant agreement no. 228344. The crews of the launch Haliotis and the R/V L’Atalante are gratefully acknowledged for their assistance in data acquisition. We gratefully acknowledge J. White, A. Gudmundsson, N.C. Mitchell, D. Smith and an anonymous reviewer for their comments that improved the quality of the paper.

Supplementary material

445_2015_905_MOESM1_ESM.tif (8.9 mb)
Fig. 1 ESM Method used to calculate the average diameter and maximum height for volcanic cones offshore Terceira. Average diameter of the base of the cone is calculated as square root of ×4 plan-view area (outlined by dashed line on the shaded relief map)/π. The height is calculated as the elevation between the peak and the reconstructed basal plane of the cone, as shown in profiles A-B and C-D (TIFF 9086 kb)
445_2015_905_Fig13_ESM.gif (202 kb)

High resolution image (GIF 202 kb)

References

  1. Andrew RE, Gudmundsson A (2007) Distribution, structure, and formation of Holocene lava shields in Iceland. J Volcanol Geotherm Res 168(1):137–154CrossRefGoogle Scholar
  2. Argus DF, Gordon RG, DeMets C, Stein S (1989) Closure of the Afric-Eurasia-North America plate motion circuit and tectonics of the Gloria fault. J Geophys Res 94:5585–5602CrossRefGoogle Scholar
  3. Babonneau N, Delacourt C, Cancouët R et al (2013) Direct sediment transfer from land to deep-sea: insights into shallow multibeam bathymetry at La Réunion Island. Mar Geol 346:47–57CrossRefGoogle Scholar
  4. Bacon CR, Duffield WA, Nakamura K (1980) Distribution of rhyolite domes of the Coso Range, California: implications for the extent of the geothermal anomaly. J Geophys Res 81:2425–2433CrossRefGoogle Scholar
  5. Beier C, Haase KM, Abouchami W, Krienitz M-S, Hauff F (2008) Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochem Geophys Geosyst 9:Q12013Google Scholar
  6. Bonatti E, Harrison CGA (1988) Eruption styles of basalt in oceanic spreading ridges and seamounts: effect of magma temperature and viscosity. J Geophys Res 93:2967–2980CrossRefGoogle Scholar
  7. Booth B, Walker GPL, Croasdale R (1978) A quantitative study of five thousand years of volcanism on São Miguel, Azores. Philos Trans R Soc Lond, Ser A. 228:271–319Google Scholar
  8. Borges JF, Bezzeghoud M, Buforn E, Pro C, Fitas A (2007) The 1980, 1997 and 1998 Azores earthquakes and some seismo-tectonic implications. Tectonophysics 435(1):37–54CrossRefGoogle Scholar
  9. Briais A, Sloan H, Parson LM, Murton BJ (2000) Accretionary processes in the axial valley of the Mid-Atlantic Ridge 27° N–30° N from TOBI side-scan sonar images. Mar Geophys Res 21(1–2):87–119CrossRefGoogle Scholar
  10. Buforn E, Udı́as A, Colombas MA (1988) Seismicity, source mechanisms and tectonics of the Azores–Gibraltar plate boundary. Tectonophysics 152:89–118CrossRefGoogle Scholar
  11. Calais E, DeMets C, Nocquet JM (2003) Evidence for a post-3.16-Ma change in Nubia-Eurasia-North America plate motions? Earth Planet Sci Lett 216:81–92CrossRefGoogle Scholar
  12. Calvert AT, Moore RB, McGeehin JP, Rodrigues da Silva AM (2006) Volcanic history and 40Ar/39Ar and 14C geochronology of Terceira Island, Azores, Portugal. J Volcanol Geotherm Res 156:103–115CrossRefGoogle Scholar
  13. Cannat M, Briais A, Deplus C, Escartín J, Georgen JL, Mercouriev S, Meyzen C, Muller M, Pouliquen G, Rabain A, Silva P (1999) Mid-AtlanticRidge—Azores hotspot interactions: along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 4 Ma ago. Earth Planet Sci Lett 173:257–269CrossRefGoogle Scholar
  14. Casalbore D, Romagnoli C, Bosman A, Chiocci FL (2011) Potential tsunamigenic landslides at Stromboli Volcano (Italy): Insight from marine DEM analysis. Geomorphology 126(1–2):42–50CrossRefGoogle Scholar
  15. Casalbore D, Bosman A, Romagnoli C, Chiocci FL (2014a) Large-scale seafloor waveforms on the flanks of insular volcanoes (Aeolian Archipelago, Italy), with inferences about their origin. Mar Geol 355:318–329CrossRefGoogle Scholar
  16. Casalbore D, Bosman A, Romagnoli C, Chiocci, FL (2014b) Submarine mass-movements on volcanic islands: examples from the Aeolian Archipelago (Italy). In Lollino G et al. (eds) Engineering Geology for Society and Territory-Volume 4, Springer International Publishing, pp. 199-203Google Scholar
  17. Casalbore D, Bosman A, Ridente D, Chiocci FL (2014c) Coastal and submarine landslides in the tectonically-active Tyrrhenian Calabrian margin (Southern Italy): examples and geohazard implications In: Krastel et al (Eds) Submarine mass movements and their consequences, 6th International symposium, advances in natural and technological hazards research, 37:261-269Google Scholar
  18. Casalbore D, Bosman A, Martorelli E, Sposato A, Chiocci FL (2014d) Mass wasting features on the submarine flanks of Ventotene volcanic edifice (Tyrrhenian Sea, Italy) In: Krastel et al (Eds) Submarine mass movements and their consequences, 6th International symposium, advances in natural and technological hazards research, 37:285-293Google Scholar
  19. Cashman KV, Fiske RS (1991) Fallout of pyroclastic debris from submarine volcanic eruptions. Science 253:275–280CrossRefGoogle Scholar
  20. Chiocci FL, Romagnoli C, Casalbore D et al (2013) Bathy-morphological setting of Terceira island (Azores) after the FAIVI cruise. J Maps 9:590–595Google Scholar
  21. Clague DA, Moore JG, Reynolds JR (2000) Formation of submarine flat-topped volcanic cones in Hawai'i. Bull Volcanol 62(3):214–233CrossRefGoogle Scholar
  22. Clark RM, Cox SJD (1996) A modern regression approach to determining fault displacement–scaling relationships. J Struct Geol 18:147–152CrossRefGoogle Scholar
  23. Colman A et al (2012) Effects of variable magma supply on mid-ocean ridge eruptions: constraints from mapped lava flow fields along the Galapagos Spreading Center. Geochem Geophys Geosyst 13, Q08014. doi: 10.1029/ 2012GC004163 CrossRefGoogle Scholar
  24. Coltelli M, D’Anna G, Cavallaro D, et al. (2012) Ferdinandea 2012: the oceanographic cruise on the graham bank, Strait of Sicily. In proceeding of GNGTS 2012, 207-212Google Scholar
  25. Costa ACG, Marques FO, Hildenbrand A, Sibrant ALR, Catita CMS (2014) Large-scale catastrophic flank collapses in a steep volcanic ridge: the Pico–Faial Ridge, Azores Triple Junction. J Volcanol Geotherm Res 272:111–125CrossRefGoogle Scholar
  26. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80CrossRefGoogle Scholar
  27. Dias NA, Matias L, Lourenço N, Madeira J, Carrilho F, Gaspar JL (2007) Crustal seismic velocity structure near Faial and Pico islands (AZORES), from local earthquake tomography. Tectonophysics 445:301–317CrossRefGoogle Scholar
  28. Edwards MH, Kurras GJ, Tolstoy M, Bohnenstiehl DR, Coakley BJ, Cochran JR (2001) Evidence of recent volcanic activity on the ultraslow-spreading Gakkel ridge. Nature 409(6822):808–812CrossRefGoogle Scholar
  29. Instituto Geográfico do Exército (2002a) Angra do Heroísmo (Terceira-Açores)—Folha 24, Carta Militar de Portugal—Série M889, 2nd ed. Instituto Geográfico do Exército, LisboaGoogle Scholar
  30. Instituto Geográfico do Exército (2002b) Biscoitos (Terceira-Açores)—Folha 22, Carta Militar de Portugal—Série M889, 2nd ed. Instituto Geográfico do Exército, LisboaGoogle Scholar
  31. Instituto Geográfico do Exército (2002c) Praia da Vitória (Terceira-Açores)—Folha 23 Carta Militar de Portugal—Série M889, 2nd ed. Instituto Geográfico do Exército, LisboaGoogle Scholar
  32. Instituto Geográfico do Exército, (2002d) Ribeirinha (Terceira-Açores)—Folha 25 Carta Militar de Portugal—Série M889, 2nd ed. Instituto Geográfico do Exército, LisboaGoogle Scholar
  33. Favalli M, Karátson D, Mazzarini F, Pareschi MT, Boschi E (2009) Morphometry of scoria cones located on a volcano flank: a case study from Mt. Etna (Italy), based on high-resolution LiDAR data. J Volcanol Geotherm Res 186(3):320–330CrossRefGoogle Scholar
  34. Fisher R (1984) Submarine volcaniclastic rocks. Geol Soc Lond Spec Publ 16(1):5–27CrossRefGoogle Scholar
  35. Gente P, Dyment J, Maia M, Goslin J (2003) Interaction between the Mid-Atlantic Ridge and the Azores hot spot during the last 85 Myr: emplacement and rifting of the hot spot-derived plateaus. Geochem Geophys Geosyst 4(10):8514. doi: 10.1029/2003GC00052 CrossRefGoogle Scholar
  36. Gertisser R, Self S, Gaspar JL, Kelley SP, Pimentel A, Eikenberg J, Barry TL, Pacheco JM, Queiroz G, Vespa M (2010) Ignimbrite stratigraphy and chronology on Terceira Island, Azores. Geol Soc Am S 464:133–154Google Scholar
  37. Gudmundsson A (1986) Mechanical aspects of postglacial volcanism and tectonics of the Reykjanes Peninsula, southwest Iceland. J Geophys Res 91(B12):12711–12721CrossRefGoogle Scholar
  38. Gudmundsson A (2000) Fracture dimensions, displacements and fluid transport. Journal Struct Geol 22:1221–1231CrossRefGoogle Scholar
  39. Gudmundsson A (2005) Effects of mechanical layering on the development of normal faults and dykes in Iceland. Geodin Acta 18:11–30CrossRefGoogle Scholar
  40. Gudmundsson A (2007) Infrastructure and evolution of ocean-ridge discontinuities in Iceland. J Geodynamics 43(1):6–29CrossRefGoogle Scholar
  41. Gudmundsson A, De Guidi G, Scudero S (2013) Length–displacement scaling and fault growth. Tectonophysics 608:1298–1309CrossRefGoogle Scholar
  42. Head JW, Wilson L, Smith DK (1996) Mid-ocean ridge eruptive vent morphology and substructure: evidence for the dike widths, eruption rates, and axial volcanic ridges. J Geophysic Res 101:28265–28280CrossRefGoogle Scholar
  43. Hildenbrand A, Madureira P, Marques FO, Cruz I, Henry B, Silva P (2008) Multi-stage evolution of a sub-aerial volcanic ridge over the last 1.3 Myr: S. Jorge Island, Azores Triple Junction. Earth Planet Sci Lett 273:289–298CrossRefGoogle Scholar
  44. Hildenbrand A, Marques FO, Catalão J, Catita CMS, Costa ACG (2012) Large-scale active slump of the southeastern flank of Pico Island, Azores. Geology 40:939–942CrossRefGoogle Scholar
  45. Hildenbrand A, Weis D, Madureira P, Marques FO (2014) Recent plate re-organization at the Azores Triple Junction: evidence from combined geochemical and geochronological data on Faial, S. Jorge and Terceira volcanic islands. Lithos 210:27–39CrossRefGoogle Scholar
  46. Hipólito A, Madeira J, Carmo R, Gaspar JL (2013) Neotectonics of Graciosa Island (Azores): a contribution to seismic hazard assessment of a volcanic area in a complex geodynamic setting. Ann Geophys 56(6):S0677. doi: 10.4401/ag-6222 Google Scholar
  47. Hirn A, Haessler H, Hoang Tronc P, Wittlinger G, Mendes VL (1980) Aftershock sequence of the January 1, 1980 earthquake and present-day tectonics in the Azores. Geophys Res Lett 7:501–504CrossRefGoogle Scholar
  48. Höskuldsson Á, Hey R, Kjartansson E, Guðmundsson GB (2007) The Reykjanes Ridge between 63 10′ N and Iceland. J Geodynamics 43(1):73–86CrossRefGoogle Scholar
  49. Kelly JT, Carey S, Pistolesi M, Rosi M, Croff-Bell KL, Roman C, Marani M (2014) Exploration of the 1891 Foerstner submarine vent site (Pantelleria, Italy): insights into the formation of basaltic balloons. Bull Volcanol 76(7):1–18CrossRefGoogle Scholar
  50. Kokelaar BP, Durant GP (1983) The submarine eruption and erosion of Surtla (Surtsey), Iceland. J Volcanol Geotherm Res 19:239–246CrossRefGoogle Scholar
  51. Kueppers U, Nichols AR, Zanon V, Potuzak M, Pacheco JM (2012) Lava balloons-peculiar products of basaltic submarine eruptions. Bull Volcanol 74(6):1379–1393CrossRefGoogle Scholar
  52. Leat PT, Tate AJ, Tappin DR, Day SJ, Owen MJ (2010) Growth and mass wasting of volcanic centers in the northern South Sandwich arc, South Atlantic, revealed by new multibeam mapping. Mar Geol 275(1):110–126CrossRefGoogle Scholar
  53. Ligi M, Mitchell NC, Marani M, Gamberi F, Pentitenti D, Carrara G, Rovere M, Portaro R, Centorami G, Bortoluzzi G, Jacobs C, Rouse I, Flewellen C, Whittle S, Terrinha P, Freire-Luis J, Lourenço N (1999) Giant volcanic ridges amongst the Azores Islands. Presented at Fall meeting of the American Geophysical UnionGoogle Scholar
  54. Lockwood JP, Dvorak JJ, English TT, Koyanagi RY, Okamura AT, Summers ML, Tanigawa WR (1987) Mauna Loa 1974–1984: a decade of intrusive and extrusive activity. US Geol Surv Prof Pap 1350:537–570Google Scholar
  55. Lourenço (2007) Tectono-Magmatic processes at the Azores Triple Junction. Unpublished PhD dissertationGoogle Scholar
  56. Lourenço N, Miranda J, Luis J, Ribeiro A, Mendes-Victor L, Madeira J, Needham H (1998) Morpho-tectonic analysis of the Azores Volcanic Plateau from a new bathymetric compilation of the area. Mar Geophys Res 20:141–156CrossRefGoogle Scholar
  57. Luís JF, Miranda JM (2008) Reevaluation of magnetic chrons in the North Atlantic between 35°N and 47°N: implications for the formation of the Azores Triple Junction and associated plateau. J Geophys Res 113, B1o1o5. doi:10.1029/2007Jb005573Google Scholar
  58. Luís JF, Miranda JM, Galdeano A, Patriat P (1998) Constraints on the structure of the Azores spreading center from gravity data. Mar Geophys Res 20:157–170CrossRefGoogle Scholar
  59. Machado F (1959) Submarine pits of the Azores Plateau. Bull Volcanol TXXI 109–116Google Scholar
  60. Madeira J (2005) The volcanoes of Azores island: a world-class heritage (examples from Terceira, Pico and Faial Islands), IV Internacional Symposium ProGEO on the Conservation of the Geological Heritage Field Trip Book. European Association for the Conservation of the Geological Heritage and Centro de Geociências da Universidade do Minho, BragaGoogle Scholar
  61. Madeira J, Brum da Silveira A (2003) Active tectonics and first paleoseismological results in Faial, Pico and S. Jorge islands (Azores, Portugal). Ann Geophys 46:733–761Google Scholar
  62. Madeira J, Ribeiro A (1990) Geodynamic models for the Azores triple junction: a contribution from tectonics. Tectonophysics 184:405–415CrossRefGoogle Scholar
  63. Masson DG, Watts AB, Gee MJR, Urgeles R, Mitchell NC, Le Bas TP, Canals M (2002) Slope failures on the flanks of the western Canary Islands. Earth Sci Rev 57:1–35CrossRefGoogle Scholar
  64. McClinton T, White SM, Colman A, Sinton JM (2013) Reconstructing lava flow emplacement processes at the hot spot‐affected Galápagos Spreading Center, 95° W and 92° W. Geochem Geophys Geosyst 14(8):2731–2756CrossRefGoogle Scholar
  65. Mendes VB, Madeira J, Brum da Silveira A, Trota A, Elósegui P, Pagarete J (2013) Present-day deformation in São Jorge Island, Azores, from episodic GPS measurements (2001–2011). Adv Space Res 51:1581–1592CrossRefGoogle Scholar
  66. Miranda JM, Luis JF, Abreu I, Mendes Victor LA, Galdeano A, Rossignol JC (1991) Tectonic framework of the Azores triple junction. Geophys Res Lett 188:1421–1424CrossRefGoogle Scholar
  67. Miranda JM, Victor LAM, Simoes JZ et al (1998) Tectonic setting of the Azores Plateau deduced from an OBS survey. Mar Geophys Res 20:171–182CrossRefGoogle Scholar
  68. Miranda JM, Navarro A, Catalão J, Fernandes RMS (2012) Surface displacement field at Terceira island deduced from repeated GPS measurements. J Volcanol Geotherm Res 217–218:1–7CrossRefGoogle Scholar
  69. Mitchell NC (2003) Susceptibility of mid-ocean ridge volcanic islands and seamounts to large-scale landsliding. J Geophys Res 108(B8):2397CrossRefGoogle Scholar
  70. Mitchell NC, Beir C, Rosin PL, Quartau R, Tempera F (2008) Lava penetrating water: submarine lava flows around the coasts of Pico Island, Azores. Geochem Geophys Geosyst 9:Q03024. doi: 10.1029/2007GC001725 CrossRefGoogle Scholar
  71. Mitchell NC, Stretch R, Oppenheimer C, Kay D, Beier C (2012a) Cone morphologies associated with shallow marine eruptions: east Pico Island, Azores. Bull Volcanol 74(10):2289–2301CrossRefGoogle Scholar
  72. Mitchell NC, Quartau R, Madeira J (2012b) Assessing landslide movements in volcanic islands using near-shore marine geophysical data: south Pico island, Azores. Bull Volcanol 74(2):483–496CrossRefGoogle Scholar
  73. Montanaro C, Beget J (2011) Volcano collapse along the Aleutian Ridge (western Aleutian Arc). 734 Nat Haz Earth Sys Sci 11:715–730CrossRefGoogle Scholar
  74. Moore JG, Normark WR, Holcomb RT (1994) Giant Hawaiian landslides. Annu Rev Earth Planet Sci 22:119–144CrossRefGoogle Scholar
  75. Oehler JF, Lénat JF, Labazuy P (2008) Growth and collapse of the Reunion Island volcanoes. Bull Volcanol 70:717–742CrossRefGoogle Scholar
  76. Parson LM, Murton BJ, Searle RC et al (1993) En echelon volcanic ridges at the Reykjanes Ridge: a life cycle of volcanism and tectonics. Earth Planet Sci Lett 117:73–87CrossRefGoogle Scholar
  77. Pascoal A, Silvestre C, Oliveira P (2006) Vehicle and mission control of single and multiple autonomous marine robots. In: Roberts GN, Sutton R (eds) Advances in unmanned marine vehicles. IET, London, pp 353–380CrossRefGoogle Scholar
  78. Paull CK, Ussler W III, Caress DW et al (2010) Origins of large crescent-shaped bedforms within the axial channel of Monterey Canyon. Geosphere 6:755–774CrossRefGoogle Scholar
  79. Porter SC (1972) Distribution, morphology, and size frequency of cinder cones on Mauna Kea volcano, Hawaii. Geol Soc Am Bull 83:3607–3612CrossRefGoogle Scholar
  80. Quartau R, Trenhaile AS, Mitchell NC, Tempera F (2010) Development of volcanic insular shelves: Insights from observations and modelling of Faial Island in the Azores Archipelago. Mar Geol 275:66–83CrossRefGoogle Scholar
  81. Quartau R, Tempera F, Mitchell NC, Pinheiro LM, Duarte H, Brito PO, Bates R, Monteiro JH (2012) Morphology of the Faial Island shelf (Azores): the interplay between volcanic, erosional, depositional, tectonic and mass-wasting processes. Geochem Geophys Geosy 13, Q04012CrossRefGoogle Scholar
  82. Quartau R, Hipólito A, Romagnoli C, Casalbore D, Madeira J, Tempera F, Roque C, Chiocci FL (2014) The morphology of insular shelves as a key for understanding the geological evolution of volcanic islands: insights from Terceira Island (Azores). Geochem Geophys Geosy 15:1801–1826CrossRefGoogle Scholar
  83. Romagnoli C, Casalbore D, Chiocci FL, Bosman A (2009a) Offshore evidence of large-scale lateral collapses on the eastern flank of Stromboli, Italy, due to structurally controlled, bilateral flank instability. Mar Geol 262:1–13CrossRefGoogle Scholar
  84. Romagnoli C, Kokelaar P, Casalbore D, Chiocci FL (2009b) Lateral collapses and active sedimentary processes on the northwestern flank of Stromboli volcano, Italy. Mar Geol 265:101–119CrossRefGoogle Scholar
  85. Romagnoli C, Casalbore D, Chiocci FL (2012) La Fossa caldera breaching and submarine erosion (Vulcano island, Italy). Mar Geol 303–306:87–98CrossRefGoogle Scholar
  86. Romagnoli C, Casalbore D, Bosman A, Braga R, Chiocci FL (2013) Submarine structure of Vulcano Volcano (Aeolian Islands) revealed by high-resolution bathymetry and seismo-acoustic data. Mar Geol 338:30–45CrossRefGoogle Scholar
  87. Ryan WBF, Carbotte SM, Coplan JO et al (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10, Q03014CrossRefGoogle Scholar
  88. Sauter D, Parson L, Mendel V, Rommevaux-Jestin C, Gomez O, Briais A, Mevel C, Tamaki K, the FUJI Scientific Team (2002) TOBI sidescan sonar imagery of the very slow-spreading Southwest Indian Ridge: evidence for along-axis magma distribution. Earth Planet Sci Lett 199(1–2):81–95CrossRefGoogle Scholar
  89. Schlische RW, Young SS, Ackermann RV, Gupta A (1996) Geometry and scaling relations of a population of very small rift-related normal faults. Geology 24:683–686CrossRefGoogle Scholar
  90. Searle RC, Keeton JA, Lee SM, Owens R, Mecklenburgh R, Parsons B, White RS (1998) The Reykjanes Ridge: structure and tectonics of a hot-spot influenced, slow-spreading ridge, from multibeam bathymetric, gravity and magnetic investigations. Earth Planet Sci Lett 160:463–478CrossRefGoogle Scholar
  91. Searle RC, Murton BJ, Achenbach K et al (2010) Structure and development of an axial volcanic ridge: Mid-Atlantic Ridge, 45 N. Earth Planet Sci Lett 299(1):228–241CrossRefGoogle Scholar
  92. Self S (1976) The recent volcanology of Terceira, Azores. J Geol Soc Lond 132:645–666CrossRefGoogle Scholar
  93. Settle M (1979) The structure and emplacement of cinder cone fields. Am J Sci 279:1089–1107CrossRefGoogle Scholar
  94. Silva R, Havskov J, Bean C, Wallenstein N (2012) Seismic swarms, fault plane solutions, and stress tensors for São Miguel Island central region (Azores). J Seismol 16:389–407CrossRefGoogle Scholar
  95. Smith DK, Cann JR (1993) Building the crust at the Mid-Atlantic Ridge. Nature 365(6448):707–715CrossRefGoogle Scholar
  96. Smith DK, Cann JR (1999) Constructing the upper crust of the Mid- Atlantic Ridge: a reinterpretation based on the Puna Ridge, Kilauea Volcano. J Geophys Res 104:25379–25399CrossRefGoogle Scholar
  97. Smith DK, Tivey MA, Gregg PM, Kong LSL (2001) Magnetic anomalies at the Puna Ridge, a submarine extension of Kilauea Volcano: implications for lava deposition. J Geophys Res 106(B8):16047–16060CrossRefGoogle Scholar
  98. Stretch R, Mitchell NC, Portaro RA (2006) A morphometric analysis of the submarine volcanic ridge of Pico Island. J Volcanol Geotherm Res 156:35–54CrossRefGoogle Scholar
  99. Tempera F, Hipolito A, Madeira J, Vieira S, Campos A, Mitchell NC (2013) Condor seamount (Azores, NE Atlantic): a morpho-tectonic interpretation. Deep-Sea Res Part II-Top Stud Oceanogr 98:7–23CrossRefGoogle Scholar
  100. Tibaldi A, Lagmay AMF (2006) Interaction between volcanoes and their basement. J Volcanol Geotherm Res 158(1):1–5CrossRefGoogle Scholar
  101. Trippanera D, Porreca M, Ruch J, Pimentel A, Acocella V, Pacheco J, Salvatore M (2014) Relationships between tectonics and magmatism in a transtensive/transform setting: an example from Faial Island (Azores, Portugal). Geol Soc Am Bull 126(1–2):164–181CrossRefGoogle Scholar
  102. Vogt PR, Jung WY (2004) The Terceira Rift as hyper slow, hotspot dominated oblique spreading axis: a comparison with other slow spreading plate boundaries. Earth Planet Sci Lett 218:77–90CrossRefGoogle Scholar
  103. Walker GPL (1999) Volcanic rift zones and their intrusions swarms. J Volcanol Geother Res 94:21–34CrossRefGoogle Scholar
  104. Weston FS (1964) List of recorded volcanic eruptions in the Azores with brief reports. Bol Mus Lab Min Geol Fac Ciên Lisboa 10:3–18Google Scholar
  105. Zanon V, Pimentel A (2015) Spatio-temporal constraints on magma storage and ascent conditions in a transtensional tectonic setting: the case of the Terceira Island (Azores). Am Mineral. doi: 10.2138/am-2015-4936 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • D. Casalbore
    • 1
  • C. Romagnoli
    • 2
  • A. Pimentel
    • 3
    • 4
  • R. Quartau
    • 5
    • 6
  • D. Casas
    • 7
  • G. Ercilla
    • 8
  • A. Hipólito
    • 4
  • A. Sposato
    • 1
  • F. L. Chiocci
    • 1
    • 9
  1. 1.Istituto di Geologia Ambientale e Geoingegneria (Consiglio Nazionale delle Ricerche)Area della Ricerca di Roma 1, MontelibrettiRomaItaly
  2. 2.Dipartimento di Scienze Biologiche, Geologiche ed AmbientaliUniversità di BolognaBolognaItaly
  3. 3.Centro de Informação e Vigilância Sismovulcânica dos AçoresPonta DelgadaPortugal
  4. 4.Centro de Vulcanologia e Avaliação de Riscos GeológicosUniversity of the AzoresPonta DelgadaPortugal
  5. 5.Divisão de Geologia Marinha e GeorecursosInstituto Português do Mar e da Atmosfera I.P.LisboaPortugal
  6. 6.Instituto Dom Luiz, Faculdade de Ciências da Universidade de LisboaLisboaPortugal
  7. 7.Geological Survey of SpainMadridSpain
  8. 8.Departamento de Geología Marina Instituto de Ciencias del Mar CMIMA-CSICBarcelonaSpain
  9. 9.Dipartimento Scienze della TerraSapienza Università di RomaRomaItaly

Personalised recommendations