Bulletin of Volcanology

, 77:13 | Cite as

Sedimentation of long-lasting wind-affected volcanic plumes: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile

  • Costanza Bonadonna
  • Raffaello Cioni
  • Marco Pistolesi
  • Manuela Elissondo
  • Valerie Baumann
Research Article


Sedimentation processes and fragmentation mechanisms during explosive volcanic eruptions can be constrained based on detailed analysis of grain-size variations of tephra deposits with distance from vent and total grain-size distribution (TGSD). Grain-size studies strongly rely on deposit exposure and, in case of long-lasting eruptions, can be complicated by the intricate interplay between eruptive style, atmospheric conditions, particle accumulation, and deposit erosion. The 2011 Cordón Caulle eruption, Chile, represents an ideals laboratory for the study of long-lasting eruptions thanks to the good deposit accessibility in medial to distal area. All layers analyzed are mostly characterized by bimodal grain-size distributions, with both the modes and the fraction of the coarse subpopulation decreasing rapidly with distance from vent and those of the fine subpopulation being mostly stable. Due to gradually changing wind direction, the two subpopulations characterizing the deposit of the first 2 days of the eruption are asymmetrically distributed with respect to the dispersal axis. The TGSD of the climactic phase is also bimodal, with the coarse subpopulation representing 90 wt% of the whole distribution. Polymodality of individual samples is related to size-selective sedimentation processes, while polymodality of the TGSD is mostly related to the complex internal texture (e.g., size and shape of vesicles) of the most abundant juvenile clasts. The most representative TGSD could be derived based on a combination of the Voronoi tessellation with a detailed analysis of the thinning trend of individual size categories. Finally, preferential breakage of coarse pumices on ground impact was inferred from the study of particle terminal velocity.


Tephra Particle aggregation Grain-size bimodality Total grain-size distribution Particle terminal velocity Inversion strategies 



C. Bonadonna was supported by the Swiss National Science Foundation (SNSF; No. 200020_125024). M. Pistolesi and R. Cioni were supported by the Italian Ministero Universita’ e Ricerca funds (PRIN 2008—AshErupt project. The authors are grateful to A. Bertagnini, R. Gonzales, L. Francalanci, and P. Sruoga for their assistance in the field and to L. Dominguez for her help in grain size analyses. Many thanks also to A. Costa, L. Pioli, and L. Connor for constructive discussion. Both V. Manville (associate editor) and U. Kueppers are thanked for thorough review.


  1. Alfano F, Bonadonna C, Connor CB, Volentik A (submitted) From tephra grain-size and dispersal to magma fragmentation: the case of the 2008 Chaitén rhyolitic eruption, Chile. Bull VolcanolGoogle Scholar
  2. Alfano F, Bonadonna C, Gurioli L (2012) Insights into eruption dynamics from textural analysis: the case of the May, 2008, Chaiten eruption. Bull Volcanol 74(9):2095–2108CrossRefGoogle Scholar
  3. Biass S, Bonadonna C (2014) TOTGS: Total grainsize distribution of tephra fallout Accessed 26 Jan 2015
  4. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40(5):415–418CrossRefGoogle Scholar
  5. Bonadonna C, Houghton BF (2005) Total grainsize distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456CrossRefGoogle Scholar
  6. Bonadonna C, Mayberry GC, Calder ES et al (2002) Tephra fallout in the eruption of Soufrière Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, Memoir, pp 483–516Google Scholar
  7. Bonadonna C, Phillips JC, Houghton BF (2005) Modeling tephra sedimentation from a Ruapehu weak plume eruption. Journal of Geophysical Research 110(B8, B08209)Google Scholar
  8. Bonadonna C, Genco R, Gouhier M, et al (2011) Tephra sedimentation during the 2010 Eyjafjallajokull eruption (Iceland) from deposit, radar, and satellite observations. J Geophys Res Solid Earth 116Google Scholar
  9. Bonadonna C, Cioni R, Pistolesi M, et al (2013) Determination of the largest clast sizes of tephra deposits for the characterization of explosive eruptions: a study of the IAVCEI commission on tephra hazard modelling. Bull Volcanol 75(1)Google Scholar
  10. Bonadonna C, Pistolesi M, Cioni R, et al. (2015, in press) Dynamics of wind-affected volcanic plumes: the example of the 2011 Cordón Caulle eruption, Chile. J Geophys ResGoogle Scholar
  11. Brazier S, Sparks RSJ, Carey SN et al (1983) Bimodal grain-size distribution and secondary thickening in air-fall ash layers. Nature 301(5896):115–119CrossRefGoogle Scholar
  12. Brown RJ, Bonadonna C, Durant AJ (2012) A review of volcanic ash aggregation. Phys Chem Earth 45–46:65–78CrossRefGoogle Scholar
  13. Carazzo G, Jellinek AM (2012) A new view of the dynamics, stability and longevity of volcanic clouds. Earth Planet Sci Lett 325:39–51CrossRefGoogle Scholar
  14. Carazzo G, Jellinek AM (2013) Particle sedimentation and diffusive convection in volcanic ash-clouds. J Geophys Res Solid Earth Planets 118(4):1420–1437CrossRefGoogle Scholar
  15. Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St-Helens volcano. J Geophys Res 87(B8):7061–7072CrossRefGoogle Scholar
  16. Castro JM, Schipper CI, Mueller SP, et al. (2013) Storage and eruption of near-liquidus rhyolite magma at Cordon Caulle, Chile. Bull Volcanol 75(4)Google Scholar
  17. Collini E, Osores SM, Folch A et al (2013) Volcanic ash forecast during the June 2011 Cordon Caulle eruption. Nat Hazards 66(2):389–412CrossRefGoogle Scholar
  18. Connor CB, Connor LJ, Bonadonna C, Luhr JF, Savov IP, Navarro-Ochoa C (2015, in press) Modeling tephra thickness and particle size distribution of the 1913 eruption of Volcan de Colima, Mexico. In: Varley N, Komorowski JC (eds) Volcan de Colima—managing the threat. Springer Verlag for the IAVCEI in the Active Volcanoes of the World SeriesGoogle Scholar
  19. Dingwell DB, Lavallee Y, Kueppers U (2012) Volcanic ash: a primary agent in the Earth system. Phys Chem Earth 45–46:2–4CrossRefGoogle Scholar
  20. Dufek J, Manga M, Patel A (2012) Granular disruption during explosive volcanic eruptions. Nat Geosci 5(8):561–564CrossRefGoogle Scholar
  21. Durant AJ, Rose WI (2009) Sedimentological constraints on hydrometeor-enhanced particle deposition: 1992 eruptions of Crater Peak, Alaska. J Volcanol Geotherm Res 186(1–2):40–59CrossRefGoogle Scholar
  22. Durant AJ, Rose WI, Sarna-Wojcicki AM, et al. (2009) Hydrometeor-enhanced tephra sedimentation: constraints from the 18 May 1980 eruption of Mount St. Helens. J Geophys Res Solid Earth 114Google Scholar
  23. Durant AJ, Villarosa G, Rose WI et al (2012) Long-range volcanic ash transport and fallout during the 2008 eruption of Chaiten volcano, Chile. Phys Chem Earth 45–46:50–64CrossRefGoogle Scholar
  24. Eychenne J, Le Pennec J-L, Troncoso L et al (2012) Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador). Bull Volcanol 74(1):187–205CrossRefGoogle Scholar
  25. Fisher RV, Schmincke HU (1984) Pyroclastic rocks. pp xiv + 472 pp-xiv + 472 ppGoogle Scholar
  26. Folch A (2012) A review of tephra transport and dispersal models: evolution, current status, and future perspectives. J Volcanol Geotherm Res 235:96–115CrossRefGoogle Scholar
  27. Folch A, Mingari L, Osores MS, Collini E (2014) Modeling volcanic ash resuspension—application to the 14-18 October 2011 outbreak episode in central Patagonia, Argentina. Nat Hazards Earth Syst Sci 14(1):119–133CrossRefGoogle Scholar
  28. Fontijn K, Ernst GGJ, Bonadonna C et al (2011) The 4-ka Rungwe Pumice (South-Western Tanzania): a wind-still Plinian eruption. Bull Volcanol 73(9):1353–1368CrossRefGoogle Scholar
  29. Gaitán JJ, Ayesa JA, Umaña F, Raffo F, Bran DB (2011) Cartografía del área afectada por cenizas volcánicas en las provincias de Río Negro y Neuquén. In: INTA
  30. Ganser GH (1993) A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol 77(2):143–152CrossRefGoogle Scholar
  31. Hadley D, Hufford GL, Simpson JJ (2004) Resuspension of relic volcanic ash and dust from Katmai: still an aviation hazard. Weather Forecast 19(5):829–840CrossRefGoogle Scholar
  32. Hildreth W, Drake RE (1992) Volcano Quizapu, Chilean Andes. Bull Volcanol 54:93–125CrossRefGoogle Scholar
  33. Hincks TK, Aspinall WP, Baxter PJ et al (2006) Long term exposure to respirable volcanic ash on Montserrat: a time series simulation. Bull Volcanol 68(3):266–284CrossRefGoogle Scholar
  34. Hobbs PV, Hegg DA, Radke LF (1983) Resuspension of volcanic ash from Mount St-Helens. J Geophys Res Oceans Atmos 88(NC6):3919–3921CrossRefGoogle Scholar
  35. Inman DL (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 22:125–145Google Scholar
  36. INTA (2011), Estado de situación derivado de las cenizas del complejo volcánico Puyehue –Cordón caulle en la provincia del Chubut Rep., INTA Accessed 26 Jan 2015
  37. Kaminski E, Jaupart C (1998) The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. J Geophys Res Solid Earth 103(B12):29759–29779CrossRefGoogle Scholar
  38. Kueppers U, Scheu B, Spieler O, Dingwell DB (2006) Fragmentation efficiency of explosive volcanic eruptions: a study of experimentally generated pyroclasts. J Volcanol Geotherm Res 153(1–2):125–135CrossRefGoogle Scholar
  39. Leadbetter SJ, Hort MC, von Lowis S, et al. (2012) Modeling the resuspension of ash deposited during the eruption of Eyjafjallajokull in spring 2010. J Geophys Res Atmos 117Google Scholar
  40. Legros F (2000) Minimum volume of a tephra fallout deposit estimated from a single isopach. J Volcanol Geotherm Res 96:25–32CrossRefGoogle Scholar
  41. Manzella I, Bonadonna C, Phillips JC, Monnard H (2015) The role of convective instabilities in deposition of volcanic ash. Geology. doi: 10.1130/G36252.1
  42. Mastin LG, Bonadonna C, Folch A, Webley P, stunder B, Pavolonis M (2013) "Eruption data for ash-cloud model validation," Accessed 26 Jan 2015
  43. Murrow PJ, Rose WI, Self S (1980) Determination of the total grain-size distribution in a vulcanian eruption column, and its implications to stratospheric aerosol perturbation. Geophys Res Lett 7(11):893–896CrossRefGoogle Scholar
  44. Perugini D, Speziali A, Caricchi L, Kueppers U (2011) Application of fractal fragmentation theory to natural pyroclastic deposits: Insights into volcanic explosivity of the Valentano scoria cone (Italy). J Volcanol Geotherm Res 202(3–4):200–210CrossRefGoogle Scholar
  45. Pistolesi M, Cioni R, Bonadonna C, et al (2015) Complex dynamics of small-moderate volcanic events: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bull Volcanol. doi: 10.1007/s00445-014-0898-3
  46. Prata AJ, Grant IF (2001) Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data: application to Mt Ruapehu, New Zealand. Q J R Meteorol Soc 127(576):2153–2179CrossRefGoogle Scholar
  47. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51(1):1–15CrossRefGoogle Scholar
  48. Rose WI, Self S, Murrow PJ, et al. (2007) Nature and significance of small volume fall deposits at composite volcanoes: insights from the October 14, 1974 Fuego eruption, Guatemala. Bull VolcanolGoogle Scholar
  49. Rust AC, Cashman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res Solid Earth 116Google Scholar
  50. Scasso R, Corbella H, Tiberi P (1994) Sedimentological analysis of the tephra from 12-15 August 1991 eruption of Hudson Volcano. Bull Volcanol 56:121–132CrossRefGoogle Scholar
  51. Schipper CI, Castro JM, Tuffen H, James MR, How P (2013) Shallow vent architecture during hybrid explosive-effusive activity at Cordón Caulle (Chile, 2011-12): evidence from direct observations and pyroclast textures. J Volcanol Geoth Res 262:25–37. doi: 10.1016/j.jvolgeores.2013.06.005 CrossRefGoogle Scholar
  52. Scollo S, Del Carlo P, Coltelli M (2007) Tephra fallout of 2001 Etna flank eruption: analysis of the deposit and plume dispersion. J Volcanol Geotherm Res 160(1–2):147–164CrossRefGoogle Scholar
  53. SERNAGEOMIN/OVDAS (2011) Puyehue - Cordón Caulle: Reporte especial de actividad volcánica No31. In:
  54. Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Philos Trans R Soc Lond 229:241–273CrossRefGoogle Scholar
  55. Thorsteinsson T, Johannsson T, Stohl A, Kristiansen NI (2012) High levels of particulate matter in Iceland due to direct ash emissions by the Eyjafjallajokull eruption and resuspension of deposited ash. J Geophys Res Solid Earth 117Google Scholar
  56. Varekamp JC, Luhr JF, Prestegaard KL (1984) The 1982 eruptions of El-Chichon Volcano (Chiapas, Mexico)—character of the eruptions, ash-fall deposits, and gas-phase. J Volcanol Geotherm Res 23(1–2):39–68CrossRefGoogle Scholar
  57. Volentik ACM, Bonadonna C, Connor CB et al (2010) Modeling tephra dispersal in absence of wind: insights from the climactic phase of the 2450 BP Plinian eruption of Pululagua volcano (Ecuador). J Volcanol Geotherm Res 193(1–2):117–136CrossRefGoogle Scholar
  58. Waitt RB, Jr., Hansen VL, Sarna-Wojcicki AM, Wood SH (1981) Proximal air-fall deposits of eruptions between May 24 and August 7, 1980-stratigraphy and field sedimentology Mount St. Helens. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. U.S. Geological Survey Professional Paper Washington, D.C., pp 617-628Google Scholar
  59. Walker GPL (1981) Characteristics of two phreatoplinian ashes, and their water-flushed origin. J Volcanol Geotherm Res 9:395–407CrossRefGoogle Scholar
  60. Wiesner MG, Wetzel A, Catane SG et al (2004) Grain size, areal thickness distribution and controls on sedimentation of the 1991 Mount Pinatubo tephra layer in the South China Sea. Bull Volcanol 66(3):226–242CrossRefGoogle Scholar
  61. Wilson TM, Cole JW, Stewart C et al (2011) Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bull Volcanol 73(3):223–239CrossRefGoogle Scholar
  62. Wilson TM, Stewart C, Bickerton H, et al. (2013) Impacts of the June 2011 Puyehue-Cordon Caulle volcanic complex eruption on urban infrastucture, agricolture and public health. In: GNS Science Report 2012/20.Google Scholar
  63. Wohletz KH, Sheridan MF, Brown WK (1989) Particle-size distributions and the sequential fragmentation/transport theory applied to volcanic ash. J Geophys Res Solid Earth Planets 94(B11):15703–15721CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Costanza Bonadonna
    • 1
  • Raffaello Cioni
    • 2
  • Marco Pistolesi
    • 2
  • Manuela Elissondo
    • 3
  • Valerie Baumann
    • 3
  1. 1.Section des sciences de la Terre et de l’environnementUniversitè de GenèveGenevaSwitzerland
  2. 2.Dipartimento di Scienze della TerraUniversità di FirenzeFlorenceItaly
  3. 3.Servicio Geológico Minero ArgentinoBuenos AiresArgentina

Personalised recommendations