Bulletin of Volcanology

, 77:8 | Cite as

Types and mechanisms of strombolian explosions: characterization of a gas-dominated explosion at Stromboli

  • L. Leduc
  • L. Gurioli
  • A. Harris
  • L. Colò
  • E. F. Rose-Koga
Research Article

Abstract

Textural and chemical analyses of bombs quenched directly from a normal explosion at Stromboli volcano (Italy) were integrated with coincident seismic, acoustic, and thermal data. The data set defines a new gas-dominated type of “strombolian” eruption, named type 0. These events are characterized by high-velocity emission (150–250 m s−1) of a few relatively small, juvenile particles, with entrained non-juvenile clasts that previously fell back into the vent to be re-erupted. For the studied event, the explosion depth was more than 250 m deep, and the particles showed little residence time in the shallow system. Slug ascent velocities over the final 20–35 m of magma-filled conduit, and the low viscosity of the resident magma, are all consistent with simple bubble burst in a “clean” conduit. This conduit type and eruption style likely fit popular slug ascent and burst models used to explain “strombolian” eruptions. In contrast, the ballistic-dominated type of explosions (type 1) are associated with larger proportions of stagnant material in the shallow system magma mix. We argue that the additional volume of this stagnant material pushes the free surface upward. Because of the larger volume of material available for entrainment into a type 1 slug burst, which has to fragment through a thick cap of degassed material, type 1 events tend to be rich in particles. In contrast, the less spectacular, gas-rich (type 0) events have little material to entrain, thus being poor in lapilli and bombs.

Keywords

Strombolian Explosions Gas Bombs Texture 

References

  1. Allard P, Carbonnelle J, Métrich N, Loyer H, Zettwoog P (1994) Sulphur output and magma degassing budget of Stromboli volcano. Nature 368:326–330CrossRefGoogle Scholar
  2. Andronico D, Corsaro RA, Cristaldi A, Polacci M (2008) Characterizing high energy explosive eruptions at Stromboli volcano using multidisciplinary data: an example from the 9 January 2005 explosion. J Volcanol Geotherm Res 176:541–550. doi:10.1016/j.jvolgeores.2008.05.011 CrossRefGoogle Scholar
  3. Andronico D, Taddeucci J, Cristaldi A, Miraglia M, Scarlato PG, Gaeta M (2013a) The 15 March 2007 paroxysm of Stromboli: video-image analysis, and textural and compositional features of the erupted deposit. Bull Volcanol 75:733. doi:10.1007/s00445-013-0733-2 CrossRefGoogle Scholar
  4. Andronico D, Lo Castro MD, Sciotto M, Spina L (2013b) The 2010 ash emissions at the summit craters of Mt Etna: relationship with seismo-acoustic signals. J Geophys Res Solid Earth 118. doi: 10.1029/2012JB009895Google Scholar
  5. Andronico D, Scollo S, Lo Castro MD, Cristaldi A, Lodato L, Taddeucci I (2014) Eruption dynamics and tephra dispersal from the 24 November 2006 paroxysm at South-East Crater, Mt Etna, Italy. J Volcanol Geotherm Res 274:78–91CrossRefGoogle Scholar
  6. Bai L, Baker DR, Polacci M, Hill RJ (2011) In-situ degassing study on crystal-bearing Stromboli basaltic magmas: implications for Stromboli explosions. Geophys Res Lett 38:L17309. doi:10.1029/2011GL048540 CrossRefGoogle Scholar
  7. Barberi F, Rosi M, Sodi A (1993) Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanol 3:173–187Google Scholar
  8. Batchelor GK (1967) Introduction to fluid dynamics. Cambridge University Press, New York, p 615Google Scholar
  9. Belien IB, Cashman KV, Rempel AW (2010) Gas accumulation in particle-rich suspensions and implications for bubble population in crystal-rich magma. Earth Planet Sci Lett 297:133–140CrossRefGoogle Scholar
  10. Braun T, Ripepe M (1993) Interaction of seismic and air waves recorded at Stromboli Volcano. Geophys Res Lett 20:65–68. doi: 10.1029/92GL02543Google Scholar
  11. Burton MR, Mader HM, Polacci M (2007) The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes. Earth Planet Sci Lett 264:46–60. doi:10.1016/j.epsl.2007.08.028 CrossRefGoogle Scholar
  12. Chouet B, Hamisevicz N, McGetchin TR (1974) Photoballistics of volcanic jet activity at Stromboli, Italy. J Geophys Res 79(32):4961–4976CrossRefGoogle Scholar
  13. Chouet B, Saccarotti G, Dawson P, Martini M, Scarpa R, De Luca G, Milana G, Cattaneo M (1999) Broadband measurements of the source of explosions at Stromboli Volcano, Italy. Geophys Res Lett 26:1937–1940CrossRefGoogle Scholar
  14. Chouet B, Dawson P, Ohminato T, Martini M, Saccarotti G, Giudicepietro F, De Luca G, Milana G, Scarpa R (2003) Source mechanism of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversions of very-long-period data. J Geophys Res 108(B1):2019. doi:10.1029/2002JB001919 CrossRefGoogle Scholar
  15. Cigolini C, Laiolo M, Bertolino S (2008) Probing Stromboli volcano from the mantle to paroxysmal eruptions. In: Annen C, Zellmer GF (eds) Dynamics of crustal magma transfer, storage and differentiation. Special Publications 304. Geological Society, London, pp 33–70Google Scholar
  16. Colò L, Ripepe M, Baker DR, Polacci M (2010) Magma vesiculation and infrasonic activity at Stromboli open conduit volcano. Earth Planet Sci Lett 292(3–4):274–280CrossRefGoogle Scholar
  17. Corsaro RA, Miraglia L, Zanon V (2005) Petrologic monitoring of glasses in the pyroclastites erupted in February 2004 by the Stromboli Volcano, Aeolian Islands, Southern Italy. J Volcanol Geotherm Res 139:339–443CrossRefGoogle Scholar
  18. D’Oriano C, Bertagnini A, Pompilio M (2011) Ash erupted during normal activity at Stromboli (Aeolian Islands, Italy) raises questions on how the feeding system works. Bull Volcanol 73(5):471–477CrossRefGoogle Scholar
  19. Francalanci L, Tommasini S, Conticelli S, Davies G (1999) Sr isotope evidence for short magma residence time for the 20th century activity at Stromboli volcano, Italy. Earth Planet Sci Lett 167(1–2):61–69CrossRefGoogle Scholar
  20. Francalanci L, Davies GR, Lustenmhower W, Tommasini S, Mason PRD, Conticelli S (2005) Old crystal re-cycle and multiple magma reservoirs in the plumbing system of the present day activity at Stromboli volcano, South Italy: Sr-isotope in situ microanalyses. J Petrol 46:1997–2021CrossRefGoogle Scholar
  21. Gurioli L, Harris AJL, Houghton BF, Polacci M, Ripepe M (2008) Textural and geophysical characterization of explosive basaltic activity at Villarrica volcano. J Geophys Res 113:B08206. doi:10.1029/2007JB005328 Google Scholar
  22. Gurioli L, Harris AJL, Colò L, Bernard J, Favalli M, Ripepe M, Andronico D (2013) Classification, landing distribution and associated flight parameters for a bomb field emplaced during a single major explosion at Stromboli, Italy. Geology 41(5):559–562. doi:10.1130/G33967.1 CrossRefGoogle Scholar
  23. Gurioli L, Colo’ L, Bollasina AJ, Harris AJL, Whittington A, Ripepe M (2014) Dynamics of strombolian explosions: inferences from inferences from field and laboratory studies of erupted bombs from Stromboli volcano. J Geophys Res 119:319–345. doi:10.1002/2013JB010355 CrossRefGoogle Scholar
  24. Harris (2013) Thermal remote sensing of active volcanoes: a user’s manual. Cambridge University Press, Cambridge, 728 pCrossRefGoogle Scholar
  25. Harris AJL, Ripepe M (2007a) Synergy of multiple geophysical approaches to unravel explosive eruption conduit and source dynamics—a case study from Stromboli. Chem Erde 67:1–35CrossRefGoogle Scholar
  26. Harris AJL, Ripepe M (2007b) Temperature and dynamics of degassing at Stromboli. J Geophys Res. doi:10.1029/2006JB004393 Google Scholar
  27. Harris AJL, Stevenson D (1997) Magma budgets and steady-state activity of Vulcano and Stromboli. Geophys Res Lett 24:1043–1046CrossRefGoogle Scholar
  28. Harris AJL, Ripepe M, Hughes EE (2012) Detailed analysis of particle launch velocities, size distributions and gas densities during normal explosions at Stromboli. J Volcanol Geotherm Res 231–232:109–131CrossRefGoogle Scholar
  29. Harris AJL, Delle Donne D, Dehn J, Ripepe M, Worden K (2013) Volcanic plume and bomb field masses from thermal infrared camera imagery. Earth Planet Sci Lett 365:77–85. doi:10.1016/j.epsl.2013.01.004 CrossRefGoogle Scholar
  30. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462CrossRefGoogle Scholar
  31. James MR, Lane SJ, Chouet BA, Gilbert JS (2004) Pressure changes associated with the ascent and bursting of gas slugs in liquid-filled vertical inclined conduits. J Volcanol Geotherm Res 129:61–82CrossRefGoogle Scholar
  32. Jaupart C, Vergniolle S (1988) Laboratory models of Hawaiian and Strombolian eruptions. Nature 331:58–60CrossRefGoogle Scholar
  33. Jaupart C, Vergniolle S (1989) The generation and collapse of a foam layer at the roof of a basaltic magma chamber. J Fluid Mech 203:347–380CrossRefGoogle Scholar
  34. Lacanna G, Ripepe M (2013) Influence of near-source volcano topography on the acoustic wavefield and implication for source modeling. J Volcanol Geotherm Res 250:9–18CrossRefGoogle Scholar
  35. Landi P, Francalanci L, Pompilio M, Rosi M, Corsaro RA, Petrone CM, Nardini I, Miraglia L (2006) The December 2002 July 2003 effusive event at Stromboli volcano, Italy: insights into the shallow plumbing system by petrochemical studies. J Volcanol Geotherm Res 155(3–4):263–284CrossRefGoogle Scholar
  36. Landi P, Corsaro RA, Francalanci L, Civetta L, Miraglia L, Pompilio M, Tesoro R (2009) Magma dynamics during the 2007 Stromboli eruption (Aeolian Islands, Italy): mineralogical, geochemical and isotopic data. J Volcanol Geotherm Res 182:255–268CrossRefGoogle Scholar
  37. Landi P, Marchetti E, La Felice S, Ripepe M, Rosi M (2011) Integrated petrochemical and geophysical data reveals thermal distribution of the feeding conduits at Stromboli volcano, Italy. Geophys Res Lett 38:L08305CrossRefGoogle Scholar
  38. Lautze NC, Houghton BF (2005) Physical mingling of the magma and complex eruption dynamics in the shallow conduit at Stromboli volcano, Italy. Geology 33:425–428CrossRefGoogle Scholar
  39. Lautze NC, Houghton BF (2007) Linking variable explosion style and magma textures during 2002 at Stromboli volcano, Italy. Bull Volcanol 69:445–460CrossRefGoogle Scholar
  40. Lautze NC, Houghton BF (2008) Single explosions at Stromboli in 2002: Use of clast microtextures to map physical diversity across a fragmentation zone. J Volcanol Geotherm Res 170:262–268CrossRefGoogle Scholar
  41. Lautze NC, Taddeucci J, Andronico D, Cannata C, Tornetta L, Scarlato P, Houghton BF, Lo Castro MD (2012) SEM-based methods for the analysis of basaltic ash from weak explosive activity at Etna in 2006 and the 2007 eruptive crisis at Stromboli. Phys Chem Earth 45–46:113–127. doi:10.1016/j.pce.2011.02 CrossRefGoogle Scholar
  42. Lautze N, Taddeucci J, Andronico D, Houghton B, Niemeijer A, Scarlato P (2013) Insights into explosion dynamics and the production of ash at Stromboli from samples collected in real-time, October 2009. In: Rose WI, Palma JL, Delgado Granados H, Varley N (eds) Understanding open-vent volcanism and related hazards, vol 498, Geological Society of America Special Paper., pp 125–139. doi:10.1130/2013.2498(08) Google Scholar
  43. Le Voyer M, Rose‐Koga EF, Laubier M, Schiano P (2008) Petrogenesis of arc lavas from the Rucu Pichincha and Pan de Azucar volcanoes (Ecuadorian arc): major, trace element, and boron isotope evidences from olivine‐hosted melt inclusions. Geochem Geophys Geosyst. doi:10.1029/2008GC002173, ISSN: 1525–2027Google Scholar
  44. LeBas MJ, Le Maitre RW, Woolley AR (1992) The construction of the total alkali-silica chemical classification of volcanic rocks. Mineral Petrol 46:1–22CrossRefGoogle Scholar
  45. Marchetti E, Ripepe M (2005) Stability of the seismic source during effusive and explosive activity at Stromboli Volcano. Geophys Res Lett 32:L03307. doi:10.1029/2004GL021406 CrossRefGoogle Scholar
  46. Métrich N, Bertagnini A, Landi P, Rosi M, Belhadj O (2005) Triggering mechanisms at the origin of paroxysms at Stromboli (Aeolian Archipelago, Italy): the 5 April 2003 eruption. Geophys Res Lett 32:L10305. doi:10.1029/2004GL02257 CrossRefGoogle Scholar
  47. Métrich N, Bertagnini A, Di Muro A (2010) Conditions of magma storage, degassing and ascent at Stromboli: new insights into the volcano plumbing system with inferences on the eruptive dynamics. J Petrol 51(3):603–626. doi:10.1093/petrology/egp083 CrossRefGoogle Scholar
  48. Miwa T, Toramaru A (2013) Conduit process in vulcanian eruptions at Sakurajima volcano, Japan: inference from comparison of volcanic ash with pressure wave and seismic data. Bull Volcanol 75:685. doi:10.1007/s00445-012-0685-y CrossRefGoogle Scholar
  49. Miwa T, Toramaru A, Iguchi M (2009) Correlations of volcanic ash texture with explosion earthquakes from vulcanian eruptions at Sakurajima volcano, Japan. J Volcanol Geotherm Res 184(3–4):473–486CrossRefGoogle Scholar
  50. Ntepe N, Dorel J (1990) Observation of seismic volcanic signals at Stromboli volcano (Italy). J Volcanol Geotherm Res 43:235–251CrossRefGoogle Scholar
  51. Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134:131–144CrossRefGoogle Scholar
  52. Parfitt EA, Wilson L (1995) Explosive volcanic eruptions –IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys J Int 121:226–232CrossRefGoogle Scholar
  53. Patrick MR, Harris AJL, Ripepe M, Dehn J, Rothery D, Calvari S (2007) Strombolian explosive styles and source conditions: insights from thermal (FLIR) video. Bull Volcanol 69:769–784CrossRefGoogle Scholar
  54. Pioli L, Pistolesi M, Rosi M (2014) Transient explosions at open-vent volcanoes: the case of Stromboli (Italy). Geology 42(10):863–866. doi:10.1130/G35844.1 CrossRefGoogle Scholar
  55. Pistolesi M, Delle Donne D, Pioli L, Rosi M, Ripepe M (2011) The 15 March 2007 explosive crisis at Stromboli volcano, Italy: assessing physical parameters through a multidisciplinary approach. J Geophys Res 116(B12). doi: 10.1029/2011JB008527Google Scholar
  56. Polacci M, Baker DR, Mancini L, Tromba G, Zanini F (2006) Three-dimensional investigation of volcanic textures by X-ray microtomography and implications for conduit processes. Geophys Res Lett 33:L13312. doi:10.1029/2006GL026241 CrossRefGoogle Scholar
  57. Polacci M, Baker DR, Bai L, Mancini L (2008) Large vesicles record pathways of degassing of basaltic volcanoes. Bull Volcanol 70:1023–1029CrossRefGoogle Scholar
  58. Polacci M, Baker DR, Mancini L, Favretto S, Hill RJ (2009) Vesiculation in magmas from Stromboli and implications for normal Strombolian activity and paroxysmal explosions in basaltic systems. J Geophys Res 114:B01206. doi:10.1029/2008JB005672 Google Scholar
  59. Ripepe M, Rossi M, Saccorotti G (1993) Image processing of explosive activity at Stromboli. J Volcanol Geotherm Res 54:335–351CrossRefGoogle Scholar
  60. Ripepe M, Ciliberto S, Della Schiava M (2001) Time constraints for modeling source dynamics of volcanic explosions at Stromboli. J Geophys Res 106:8713–8727CrossRefGoogle Scholar
  61. Ripepe M, Harris AJL, Carniel R (2002) Thermal seismic and infrasonic evidences of variable degassing rates at Stromboli volcano. J Volcanol Geotherm Res 118:285–297CrossRefGoogle Scholar
  62. Ripepe M, Poggi P, Marchetti E (2004) Small aperture infrasonic 1010 array monitors activity of Stromboli Volcano. Inframatics 7:1–14Google Scholar
  63. Rosi M, Bertagnini A, Harris AJL, Pioli L, Pistolesi M, Ripepe M (2006) A case history of paroxysmal explosion at Stromboli: timing and dynamics of the April 5, 2003 event. Earth Planet Sci Lett 243:594–606CrossRefGoogle Scholar
  64. Schiavi F, Kobayashi K, Moriguti T, Nakamura E, Pompilio M, Tiepolo M, Vannucci R (2010) Degassing, crystallization and eruption dynamics at Stromboli: trace element and lithium isotopic evidence from 2003 ashes. Contrib Mineral Petrol 4:541–561CrossRefGoogle Scholar
  65. Seyfried R, Freundt A (2000) Experiments on conduit flow and eruption behavior of basaltic volcanic eruptions. J Geophys Res 105(B10):23727–23740CrossRefGoogle Scholar
  66. Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190:271–289. doi:10.1016/j.jvolgeores.2009.12 CrossRefGoogle Scholar
  67. Taddeucci J, Scarlato P, Capponi A, Del Bello E, Cimarelli C, Palladino DM, Kueppers U (2012) High-speed imaging of Strombolian explosions: the ejection velocity of pyroclasts. J Geophys Res 39:L02301. doi:10.1029/2011GL050404 Google Scholar
  68. Taddeucci J, Palladino DM, Sottili G, Bernini D, Andronico D, Cristaldi A (2013) Linked frequency and intensity of persistent volcanic activity at Stromboli (Italy). Geophys Res Lett 40:3384–3388. doi:10.1002/grl.50652 CrossRefGoogle Scholar
  69. Tait S, Thomas R, Gardner J, Jaupart C (1998) Constraints on cooling rates and permeabilities of pumice in an explosive eruption jet from colour and magnetic mineralogy. J Volcanol Geotherm Res 86(1–4):79–91CrossRefGoogle Scholar
  70. Vergniolle S, Brandeis G (1996) Strombolian explosion: 1. A large bubble breaking at the surface of a lava column as a source of sound. J Geophys Res 101(B09):20433–20448CrossRefGoogle Scholar
  71. Vergniolle S, Jaupart C (1990) Dynamics of degassing at Kilauea volcano, Hawaii. J Geophys Res 95(B3):2793–2809CrossRefGoogle Scholar
  72. Vergniolle S, Brandeis G, Mareschal JC (1996) Strombolian explosions. 2. Eruption dynamics determined from acoustic measurements. J Geophys Res 101:20449–20466CrossRefGoogle Scholar
  73. Wilson L (1980) Relationships between pressure, volatile content and ejecta velocity in three types of volcanic explosion. J Volcanol Geotherm Res 8:297–313CrossRefGoogle Scholar
  74. Wilson L, Head JW (1981) Ascent and eruption of basaltic magma on the earth and moon. J Geophys Res 86(B4):2971–3001CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • L. Leduc
    • 1
  • L. Gurioli
    • 1
  • A. Harris
    • 1
  • L. Colò
    • 2
  • E. F. Rose-Koga
    • 1
  1. 1.Laboratoire Magmas et VolcansUniversité Blaise Pascal - CNRS - IRD, OPGCClermont FerrandFrance
  2. 2.Dipartimento di Scienze della TerraUniversità degli Studi di FirenzeFlorenceItaly

Personalised recommendations