Advertisement

Bulletin of Volcanology

, 76:879 | Cite as

Numerical simulation of basaltic lava flows in the Auckland Volcanic Field, New Zealand—implication for volcanic hazard assessment

  • Gábor Kereszturi
  • Annalisa Cappello
  • Gaetana Ganci
  • Jonathan Procter
  • Károly Németh
  • Ciro Del Negro
  • Shane J. Cronin
Research Article

Abstract

Monogenetic volcanic fields, such as the Auckland Volcanic Field (AVF), New Zealand, are common on the Earth’s surface and are typically dominated by basaltic lava flows up to 10 s of km long. In monogenetic volcanic fields located in close proximity to human population and infrastructure, lava flows are a significant threat. In this study, lava flow emplacement conditions for some basaltic eruptions of the AVF were reconstructed using the thermo-rheological MAGFLOW model. Eight existing lava flows in the AVF were simulated using MAGFLOW and eruptive volumes measured from Light Detection and Ranging (LiDAR)-derived digital terrain models (DTMs). Fitting the simulations to the dimensions of actual lava flows provides insight into their emplacement mechanisms and conditions, such as effusion rate, and probable eruption durations. By looking at emplacement in different settings, the likely magma ascent rate for studied AVF eruptions is calculated to have been on the order of 0.1 m/s. In the AVF, the typical estimated duration of past lava flows was from a minimum of 2 days for small-volume flows, such as Little Rangitoto (0.0015 km3), up to 83 days for large volume flows, such as Three Kings (0.078 km3). The three best-fitting simulations were used to establish eruption scenarios for future volcanic hazard mapping for the AVF. Inferences of eruption duration that will be useful for developing realistic emergency management plans and recovery scenarios for this densely populated volcanic field are also provided.

Keywords

Lava flow Effusion rate Magma flux Ascent velocity MAGFLOW Numerical simulation Feeder dyke Scoria cone 

Notes

Acknowledgments

GK thanks the Institute of Agriculture and Environment at Massey University (New Zealand) for a PhD research scholarship. This work was supported by the FRST-IIOF project ‘Facing the challenge of Auckland’s volcanism’, as well as the New Zealand Natural Hazards Research Platform project ‘Living with Volcanic Risk’. We also gratefully acknowledge funding support from Jan Lindsay and the DEtermining VOlcanic Risk in Auckland (DEVORA), project co-funded by the NZ Earthquake Commission (EQC) and the Auckland City Council. This work was also developed within the framework of TecnoLab, the Laboratory for Technological Advance in Volcano Geophysics at the INGV in Catania. GK is thankful for the support of his hosts at the INGV in Catania, Italy. The Executive Editor, James White, the Associate Editor, Michael Manga, one anonymous reviewer and Scott Rowland are acknowledged for their constructive and supportive comments that helped us significantly improve the manuscript.

References

  1. Agustín-Flores J, Németh K, Cronin SJ, Lindsay JM, Kereszturi G, Brand BD, Smith IEM (2014) Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland Volcanic Field (New Zealand). J Volcanol Geotherm Res 276:46–63CrossRefGoogle Scholar
  2. Avolio MV, Crisci GM, Di Gregorio S, Rongo R, Spataro W, Trunfio GA (2006) SCIARA γ2: an improved cellular automata model for lava flows and applications to the 2002 Etnean crisis. Comput Geosci 32(7):876–889CrossRefGoogle Scholar
  3. Bebbington MS (2013) Assessing spatio-temporal eruption forecasts in a monogenetic volcanic field. J Volcanol Geotherm Res 252:14–28CrossRefGoogle Scholar
  4. Bebbington MS, Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland volcanic field, New Zealand, with a new event-order model. Bull Volcanol 73(1):55–72CrossRefGoogle Scholar
  5. Becerril L, Cappello A, Galindo I, Neri M, Del Negro C (2013) Spatial probability distribution of future volcanic eruptions at El Hierro Island (Canary Islands, Spain). J Volcanol Geotherm Res 257:21–30CrossRefGoogle Scholar
  6. Bilotta G, Rustico E, Hérault A, Vicari A, Russo G, Del Negro C, Gallo G (2011) Porting and optimizing MAGFLOW on CUDA. Ann Geophys 54(5). doi:10.4401/ag-5341
  7. Bilotta G, Cappello A, Hérault A, Vicari A, Russo G, Del Negro C (2012) Sensitivity analysis of the MAGFLOW Cellular Automaton model for lava flow simulation. Environ Model Softw 35:122–131CrossRefGoogle Scholar
  8. Blake S, Wilson CJN, Smith IEM, Leonard GS (2006) Lead times and precursors of eruptions in the Auckland volcanic field, New Zealand: indications from historical analogues and theoretical modelling. GNS Science Report 2006(34):1–22Google Scholar
  9. Brenna M, Cronin SJ, Németh K, Smith IEM, Sohn YK (2011) The influence of magma plumbing complexity on monogenetic eruptions, Jeju Island, Korea. Terra Nova 23:70–75Google Scholar
  10. Calvari S, Pinkerton H (1999) Lava tube morphology on Etna and evidence for lava flow emplacement mechanisms. J Volcanol Geotherm Res 90(3–4):263–280CrossRefGoogle Scholar
  11. Cappello A, Vicari A, Del Negro C (2011) Retrospective validation of a lava-flow hazard map for Mount Etna volcano. Ann Geophys 54(5):634–640Google Scholar
  12. Cappello A, Neri M, Acocella V, Gallo G, Vicari A, Del Negro C (2012) Spatial vent opening probability map of Etna volcano (Sicily, Italy). Bull Volcanol 74(9):2083–2094CrossRefGoogle Scholar
  13. Cashman KV, Kauahikaua JP (1997) Reevaluation of vesicle distributions in basaltic lava flows. Geology 25(5):419–422CrossRefGoogle Scholar
  14. Cashman KV, Mangan MT, Newman S (1994) Surface degassing and modifications to vesicle size distributions in active basalt flows. J Volcanol Geotherm Res 61(1–2):45–68CrossRefGoogle Scholar
  15. Connor CB, Connor LJ (2009) 14—estimating spatial density with kernel methods. In: Connor CB, Chapmen NA, Connor LJ (eds) Volcanic and tectonic hazard assessment for nuclear facilities. Cambride University Press, Cambride, pp 346–368CrossRefGoogle Scholar
  16. Connor LJ, Connor CB, Meliksetian K, Savov I (2012) Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia. J Appl Volcanol 1:3CrossRefGoogle Scholar
  17. Costa A, Macedonio G (2005) Computational modeling of lava flows: a review. Geol Soc Am Spec Pap 396:209–218Google Scholar
  18. Crisci G, di Gregorio S, Pindaro O, Ranieri G (1986) Lava flow simulation by a discrete cellular model: first implementation. Int j Model Simul 6:137–140Google Scholar
  19. Crisci GM, Rongo R, Di Gregorio S, Spataro W (2004) The simulation model SCIARA: the 1991 and 2001 lava flows at Mount Etna. J Volcanol Geotherm Res 132:253–267CrossRefGoogle Scholar
  20. Crisp JA (1984) Rates of magma emplacement and volcanic output. J Volcanol Geotherm Res 20(3–4):177–211CrossRefGoogle Scholar
  21. Del Negro C, Fortuna L, Vicari A (2005) Modelling lava flows by Cellular Nonlinear Networks (CNN): preliminary results. Nonlinear Process Geophys 12(4):505–513CrossRefGoogle Scholar
  22. Del Negro C, Fortuna L, Herault A, Vicari A (2008) Simulations of the 2004 lava flow at Etna volcano using the magflow cellular automata model. Bull Volcanol 70(7):805–812CrossRefGoogle Scholar
  23. Del Negro C, Cappello A, Neri M, Bilotta G, Herault A, Ganci G (2013) Lava flow hazards at Mount Etna: constraints imposed by eruptive history and numerical simulations. Sci Rep 3. doi: 10.1038/srep03493
  24. Demouchy S, Jacobsen SD, Gaillard F, Stern CR (2006) Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 34(6):429–432CrossRefGoogle Scholar
  25. Eade J (2009) Petrology and correlation of lava flows from the central part of the Auckland volcanic field. MSC thesis, University of AucklandGoogle Scholar
  26. Favalli M, Tarquini S, Fornaciai A, Boschi E (2009) A new approach to risk assessment of lava flow at Mount Etna. Geology 37(12):1111–1114CrossRefGoogle Scholar
  27. Favalli M, Tarquini S, Papale P, Fornaciai A, Boschi E (2012) Lava flow hazard and risk at Mt. Cameroon volcano. Bull Volcanol 74(2):423–439CrossRefGoogle Scholar
  28. Fries CJ (1953) Volumes and weights of pyroclastic material, lava, and water erupted by Paricutin volcano, Michoacan, Mexico. Am Geophys Union Trans 34:603–616CrossRefGoogle Scholar
  29. Galindo I, Gudmundsson A (2012) Basaltic feeder dykes in rift zones: geometry, emplacement, and effusion rates. Nat Hazards Earth Syst Sci 12(12):3683–3700CrossRefGoogle Scholar
  30. Ganci G, Vicari A, Cappello A, Del Negro C (2012) An emergent strategy for volcano hazard assessment: from thermal satellite monitoring to lava flow modeling. Remote Sens Environ 119:197–207CrossRefGoogle Scholar
  31. Geshi N, Kusumoto S, Gudmundsson A (2010) Geometric difference between non-feeder and feeder dikes. Geology 38(3):195–198CrossRefGoogle Scholar
  32. Giordano D, Dingwell D (2003) Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions. Bull Volcanol 65(1):8–14Google Scholar
  33. Guest JE, Kilburn CRJ, Pinkerton H, Duncan AM (1987) The evolution of lava flow-fields: observations of the 1981 and 1983 eruptions of Mount Etna. Sicily Bull Volcanol 49(3):527–540CrossRefGoogle Scholar
  34. Harris AJL, Rowland SK (2001) FLOWGO: a kinematic thermorheological model for lava flowing in a channel. Bull Volcanol 63:20–44CrossRefGoogle Scholar
  35. Harris AJL, Rowland SK (2009) Effusion rate controls on lava flow length and the role of heat loss: a review. In: Hoskuldsson A, Thordarson T, Larsen G, Self S, Rowland S (eds) The legacy of George P.L. Walker, Special Publications of IAVCEI 2. Geological Society of London, London, pp 33–51Google Scholar
  36. Harris AJL, Murray JB, Aries SE, Davies MA, Flynn LP, Wooster MJ, Wright R, Rothery DA (2000) Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J Volcanol Geotherm Res 102(3–4):237–270CrossRefGoogle Scholar
  37. Hayward BW, Murdoch G, Maitland G (2011) Volcanoes of Auckland. Auckland University Press, Auckland, pp 1–234Google Scholar
  38. Herault A, Vicari A, Ciraudo A, Del Negro C (2009) Forecasting lava flow hazard during the 2006 Etna eruption: using the MAGFLOW cellular automata model. Comput Geosci 35(5):1050–1060CrossRefGoogle Scholar
  39. Hidaka M, Goto A, Susumu U, Fujita E (2005) VTFS project: development of the lava flow simulation code LavaSIM with a model for three-dimensional convection, spreading, and solidification. Geochem Geophys Geosyst 6(7), Q07008CrossRefGoogle Scholar
  40. Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. J Volcanol Geotherm Res 91:97–120CrossRefGoogle Scholar
  41. Houghton BF, Bonadonna C, Gregg CE, Johnston DM, Cousins WJ, Cole JW, Del Carlo P (2006) Proximal tephra hazards: recent eruption studies applied to volcanic risk in the Auckland volcanic field. New Zealand J Volcanol Geotherm Res 155(1–2):138–149CrossRefGoogle Scholar
  42. Hulme G (1974) The interpretation of lava flow morphology. Geophys J Roy Astron Soc 39(2):361–383CrossRefGoogle Scholar
  43. Jankovics M, Dobosi G, Embey-Isztin A, Kiss B, Sági T, Harangi S, Ntaflos T (2013) Origin and ascent history of unusually crystal-rich alkaline basaltic magmas from the western Pannonian Basin. Bull Volcanol 75(9):1–23CrossRefGoogle Scholar
  44. Keating GN, Valentine GA, Krier DJ, Perry FV (2008) Shallow plumbing systems for small-volume basaltic volcanoes. Bull Volcanol 70:563–582CrossRefGoogle Scholar
  45. Kenny JA, Lindsay JM, Howe TM (2012) Post-Miocene faults in Auckland: insights from borehole and topographic analysis. New Zeal J Geol Geophys 55(4):323–343CrossRefGoogle Scholar
  46. Kereszturi G, Procter J, Cronin JS, Németh K, Bebbington M, Lindsay J (2012) LiDAR-based quantification of lava flow susceptibility in the City of Auckland (New Zealand). Remote Sens Environ 125:198–213CrossRefGoogle Scholar
  47. Kereszturi G, Németh K, Cronin JS, Agustin-Flores J, Smith IEM, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes—implication for the Quaternary Auckland volcanic field, New Zealand. J Volcanol Geotherm Res 266:16–33CrossRefGoogle Scholar
  48. Kereszturi G, Németh K, Cronin JS, Procter J, Agustín-Flores J (2014) Influences on the variability of eruption sequences and style transitions in the Auckland volcanic field. New Zealand J Volcanol Geotherm Res 286:101–115. doi: 10.1016/j.jvolgeores.2014.1009.1002
  49. Keszthelyi LP, Pieri DC (1993) Emplacement of the 75-km-long Carrizozo lava flow field, south-central New Mexico J. Volcanol Geotherm Res 59(1–2):59–75CrossRefGoogle Scholar
  50. Kilburn CRJ (2000) Lava flows and flow fields. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 291–305Google Scholar
  51. Lindsay J, Marzocchi W, Jolly G, Constantinescu R, Selva J, Sandri L (2010) Towards real-time eruption forecasting in the Auckland volcanic field: application of BET_EF during the New Zealand National Disaster Exercise ‘Ruaumoko’. Bull Volcanol 72(2):185–204CrossRefGoogle Scholar
  52. Luhr JF, Simkin T (1993) Parícutin: the volcano born in a Mexican cornfield. Geoscience Press, US, pp 1–427Google Scholar
  53. Magill C, Blong R (2005) Volcanic risk ranking for Auckland, New Zealand II: hazard consequences and risk calculation. Bull Volcanol 67(4):340–349CrossRefGoogle Scholar
  54. Magill C, McAneney K, Smith I (2005) Probabilistic assessment of vent locations for the next Auckland volcanic field event. Math Geol 37(3):227–242CrossRefGoogle Scholar
  55. Marsella M, Scifoni S, Coltelli M, Proietti C (2011) Quantitative analysis of the 1981 and 2001 Etna flank eruptions: a contribution for future hazard evaluation and mitigation. Ann Geophys 54(5):492–498Google Scholar
  56. McGee LE, Millet M-A, Smith IEM, Németh K, Lindsay JM (2012) The inception and progression of melting in a monogenetic eruption: Motukorea volcano, the Auckland volcanic field, New Zealand. Lithos 155:360–374CrossRefGoogle Scholar
  57. McGee L, Smith I, Millet M-A, Handley H, Lindsay J (2013) Asthenospheric control of melting processes in a monogenetic basaltic system: a case study of the Auckland volcanic field. New Zealand J Petrol 54(10):2125–2153Google Scholar
  58. Moufti MR, Németh K (2013) The intra-continental al Madinah volcanic field, western Saudi Arabia: a proposal to establish Harrat Al Madinah as the first volcanic Geopark in the Kingdom of Saudi Arabia. Geoheritage. doi: 10.1007/s12371-12013-10081-12379 Google Scholar
  59. Needham AJ, Lindsay JM, Smith IEM, Augustinus P, Shane PA (2011) Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland volcanic field. New Zealand J Volcanol Geotherm Res 201(1–4):126–142CrossRefGoogle Scholar
  60. Németh K, Cronin S, Smith IM, Agustin Flores J (2012) Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland volcanic field. New Zealand Bull Volcanol 74(9):2121–2137CrossRefGoogle Scholar
  61. Nowak JF (1995) Lava flow structures of a basalt volcano, Rangitoto Island, Auckland, New Zealand. MSc thesis, University of AucklandGoogle Scholar
  62. Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134(1–2):77–107CrossRefGoogle Scholar
  63. Peslier AH, Luhr JF (2006) Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: mafic alkalic magma ascent rates and water budget of the sub-continental lithosphere. Earth Planet Sci Lett 242(3–4):302–319CrossRefGoogle Scholar
  64. Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56:108–120CrossRefGoogle Scholar
  65. Pioli L, Erlund E, Johnson E, Cashman NK, Wallace P, Rosi M, Delgado Granados H (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271(1–4):359–368CrossRefGoogle Scholar
  66. Proietti C, Coltelli M, Marsella M, Fujita E (2009) A quantitative approach for evaluating lava flow simulation reliability: LavaSIM code applied to the 2001 Etna eruption. Geochem Geophys Geosyst 10(9), Q09003CrossRefGoogle Scholar
  67. Rongo R, Spataro W, D’Ambrosio D, Vittoria Avolio M, Trunfio GA, Di Gregorio S (2008) Lava flow hazard evaluation through cellular automata and genetic algorithms: an application to Mt Etna volcano. Fundam Inf 87(2):247–267Google Scholar
  68. Rowland S, Garbeil H, Harris A (2005) Lengths and hazards from channel-fed lava flows on Mauna Loa, Hawai’i, determined from thermal and downslope modeling with FLOWGO. Bull Volcanol 67:634–647CrossRefGoogle Scholar
  69. Scifoni S, Coltelli M, Marsella M, Proietti C, Napoleoni Q, Vicari A, Del Negro C (2010) Mitigation of lava flow invasion hazard through optimized barrier configuration aided by numerical simulation: the case of the 2001 Etna eruption. J Volcanol Geotherm Res 192(1–2):16–26CrossRefGoogle Scholar
  70. Sherburn S, Scott BJ, Olsen J, Miller C (2007) Monitoring seismic precursors to an eruption from the Auckland volcanic field. New Zealand New Zeal J Geol Geophys 50:1–11CrossRefGoogle Scholar
  71. Sibson R (1981) A brief description of natural neighbour interpolation. In: Barnet V (ed) In: Interpreting multivariate data. Wiley, Chichester, pp 21–36Google Scholar
  72. Siebe C, Rodriguez-Lara V, Schaaf P, Abrams M (2004) Radiocarbon ages of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico City: implications for archaeology and future hazards. Bull Volcanol 66:203–225CrossRefGoogle Scholar
  73. Smith IEM, Blake S, Wilson CJN, Houghton BF (2008) Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland. New Zealand Contrib Mineral Petrol 155(4):511–527CrossRefGoogle Scholar
  74. Sohn YK (1996) Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island. Korea Geol Soc Am Bull 108(10):1199–1211CrossRefGoogle Scholar
  75. Spargo S (2007) The Pupuke volcanic centre: polygenic magmas in a monogenetic field. MSc thesis, University of AucklandGoogle Scholar
  76. Sparks RSJ, Pinkerton H, Macdonald R (1977) The transport of xenoliths in magmas. Earth Planet Sci Lett 35(2):234–238CrossRefGoogle Scholar
  77. Stephenson PJ, Burch-Johnston AT, Stanton D, Whitehead PW (1998) Three long lava flows in north Queensland. J Geophys Res: Solid Earth 103(B11):27359–27370CrossRefGoogle Scholar
  78. Szabó C, Bodnar RJ (1996) Changing magma ascent rates in the Nógrád–Gömör volcanic field, Northern Hungary/Southern Slovakia: evidence from CO2-rich fluid inclusions in metasomatized upper mantle xenoliths. Petrology 4(3):221–230Google Scholar
  79. Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177(4):857–873CrossRefGoogle Scholar
  80. Vicari A, Herault A, Del Negro C, Coltelli M, Marsella M, Proietti C (2007) Simulations of the 2001 lava flow at Etna volcano by the Magflow cellular automata model. Environ Model Softw 22(10):1465–1471CrossRefGoogle Scholar
  81. Vicari A, Ganci G, Behncke B, Cappello A, Neri M, Del Negro C (2011) Near-real-time forecasting of lava flow hazards during the 12–13 January 2011 Etna eruption. Geophys. Res. Lett. 38(13). doi: 10.1029/2011gl047545
  82. Walker GPL (1973) Lengths of lava flows. Philosophical transactions of the royal society of London. Series A. Math Phys Sci 274:107–118CrossRefGoogle Scholar
  83. White JDL, Ross P-S (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201(1–4):1–29CrossRefGoogle Scholar
  84. Wright R, Garbeil H, Harris AJL (2008) Using infrared satellite data to drive a thermo-rheological/stochastic lava flow emplacement model: a method for near real-time volcanic hazard assessment. Geophys. Res. Lett. 35(19). doi: 10.1029/2008GL035228

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gábor Kereszturi
    • 1
    • 3
  • Annalisa Cappello
    • 2
  • Gaetana Ganci
    • 2
  • Jonathan Procter
    • 1
  • Károly Németh
    • 1
  • Ciro Del Negro
    • 2
  • Shane J. Cronin
    • 1
  1. 1.Volcanic Risk Solutions, Institute of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
  2. 2.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di CataniaCataniaItaly
  3. 3.New Zealand Centre for Precision Agriculture, Institute of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations