Advertisement

Bulletin of Volcanology

, 76:875 | Cite as

Craters of elevation revisited: forced-folds, bulging and uplift of volcanoes

  • B. van Wyk de VriesEmail author
  • A. Márquez
  • R. Herrera
  • J. L. Granja Bruña
  • P. Llanes
  • A. Delcamp
Research Article

Abstract

The eighteenth/nineteenth century ‘craters of elevation’ theory required magma to uplift strata, doming the surface and creating a central down-fallen ‘crater’ or graben. Exponents of craters of elevation attempted to apply it to explain the origin of all volcanoes, and rapidly the contemporary competing ‘craters of eruption’ theory replaced it as the paradigm for volcano construction. Several historic examples have shown that intrusions can cause uplift, termed bulges and can create features like those proposed for craters of elevation (e.g. at Usu 1944, Bezymianny 1955 and Mt. St. Helens 1980). Work on sedimentary basins that have had igneous activity has shown that intrusions create ‘forced folds’ that uplift and deform strata in a similar way to that originally proposed for craters of elevation. In view of the above, we investigate large-scale intrusion-related topographic changes at two sites where the craters of elevation theory was developed: the monogenetic volcanoes of the Chaîne des Puys, France and the Teide stratovolcano, Tenerife. We combine observations of such features with examples of forced folding to integrate the two fields of research. Our observations in the Chaîne des Puys show that: (1) the Petit Puy de Dôme has a bulge of up to 150-m uplift. The uplift has a central depressed area (a graben), a dense network of normal faults, basal thrusts and an aborted landslide. (2) The Grosmanaux volcano is a forced fold created by uplift of a previously flat-lying area, and has dense faulting and a graben on the resultant topographic bulge. It was the site also of a major vulcanian eruption from the associated Kilian crater. (3) The Gouttes volcano was uplifted by an intrusion like the Petit Puy de Dôme, but then collapsed to generate a landslide and lateral blast. (4) Excavation in the Lemptégy Volcano exposes intra-eruption intrusions with associated uplift, providing examples in cross-section of the internal deformation likely to be found inside other Chaîne des Puys uplifted bulges. On Teide, a bulge near the summit shows similar structures and surface tilting as seen on the Petit Puy de Dôme and this bulging may have formed during the eruption of the Lavas Negras, the most recent activity on the summit area. Fault scarps on Teide also expose small cryptodomes, like those seen at Lemptégy. These examples, coupled with field studies on eroded intrusions, data on forced folds in basins and analogue models, show how large-scale topographic remodelling and structural change can be created by intrusions. These can rapidly and significantly change the volcanic edifice. A crater of elevation bulge, or forced fold that is stabilised by the cooling of the intrusion, will remain an important structural element in a volcano. This process starts even at the small scale of monogenetic volcanoes, and could occur through the lifetime of any growing stratovolcano. Such activity may be commonplace, but may be masked by concomitant eruption or removed by subsequent collapse. Monitoring and hazard strategies should be ready to deal with such large-scale events that will seriously modify the eruptive activity and stability of a volcano within days or weeks.

Keywords

Craters of elevation Crater of eruption Forced fold Intrusion-related topography Cryptodomes Chaîne des Puys Teide 

Notes

Acknowledgments

We especially thank Olivier Galland and Craig Magee for great reviews and August Gudmundsson for his editorial skill. We also thank: the Volcan de Lemptégy for generous access and assistance (www.auvergne-volcan.com/): the Parque Naturale Regionale des Volcans d’Auvergne: the Chaîne des Puys and Faille de la Limagne project (www.chainedespuys-failledelimagne.com/): the Conseil Générale du Puy de Dôme (especially for co-financing the LIDAR, with the OPGC and Auvergne Region). The Teide National Park provided authorization to carry out work in restricted areas. Teleférico del Teide kindly support our fieldwork in the volcano. This work has been funded by project CGL2010-19388 of the Spanish Science Minister (MICINN). Thanks go also to: Jake Lowenstern and Paul Mohr for information on Alid: INETER in Nicaragua with whom the Momotombo work was completed: Alexander and Marina Belousov for being enthusiastic about the Petit Puy de Dôme.

References

  1. Abdelmalak MM, Mourgues R, Galland O, Bureau D (2012) Fracture mode analysis and related surface deformation during dyke intrusion: results from 2D experimental modelling. Earth Planet Sci Lett 359–360:93–105CrossRefGoogle Scholar
  2. Ablay G, Martí J (2000) Stratigraphy, structure, and volcanic evolution of the Pico Teide-Pico Viejo formation, Tenerife, Canary Islands. J Volcanol Geotherm Res 103:175–208CrossRefGoogle Scholar
  3. Acocella V (2000) Space accommodation by roof lifting during pluton emplacement at Amiata (Italy). Terra Nova 12(4):149–155CrossRefGoogle Scholar
  4. Barberi F, Varet J (1970) The Erta Ale Volcanic Range (Danakil Depression, Northern Afar, Ethiopia). Bull Volcanol 34:848–917CrossRefGoogle Scholar
  5. Barnett ZA, Gudmundsson A (2014) Numerical modelling of dykes deflected into sills to form a magma chamber. J Volcanol Geotherm Res 281:1–96CrossRefGoogle Scholar
  6. Belousov A, Voight B, Belousova M (2006) The 1956 eruption of Bezymianny and similar events worldwide: eruptive sequences, deposits and mechanisms. pp.43–48. Proceedings of International Workshop: 50-th anniversary of the 1956 Bezymianny eruption, Petropavlovsk, Russia. E.I. Gordeev edGoogle Scholar
  7. Boivin P, Besson JC, Briot D, Camus G, De Goër de Hervé A, Gourgaud A, Labazuy P, Langlois E, de Larouzière FD, Livet M, Mergoil J, Miallier D, Morel JM, Vernet G, Vincent PM (2009) Volcanologie de la Chaîne des Puys Massif Central Français, 5th Edition, scale 1:25 000, 1 sheetGoogle Scholar
  8. Borgia A (1994) The dynamic basis for volcanic spreading. J Geophys Res Solid Earth 99(B9):17791–17804CrossRefGoogle Scholar
  9. Borgia A, van Wyk de Vries B (2003) The volcano-tectonic evolution of Concepción, Nicaragua. Bull Volcanol 65:248–266CrossRefGoogle Scholar
  10. Borgia A, Ferrari L, Pasquarè G (1992) Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357:231–235CrossRefGoogle Scholar
  11. Brousse R (1978) Trois grands sujets de débats en terre volcanique d’Auvergne. Deuxième partie: Origine et construction des volcans. Troisième partie: Cratères de soulèvement. Periodique du Comité francais d’histoire de la géologie, 1e série, n° 15: 15–35Google Scholar
  12. Brown DJ, Bell BR (2006) Intrusion-induced uplift and mass wasting of the Palaeogene volcanic landscape of Ardnamurchan, NW Scotland. J Geol Soc 163:29–36CrossRefGoogle Scholar
  13. Bunger AP, Cruden AR (2011) Modeling the growth of laccoliths and large mafic sills: role of magma body forces. J Geophys Res 116(B2), B02203Google Scholar
  14. Burat A (1833) Description des terrains volcaniques de la France Centrale. Ed. Levrault, Paris, 342pGoogle Scholar
  15. Carracedo JC, Rodriguez Badiola E, Guillou H, Paterne M, Scaillet S, Perez Torrado H, Paris R, Fra-Paleo U, Hansen A (2007) Eruptive and structural history of Teide volcano and rift zones of Tenerife, Canary Islands. Geol Soc Am Bull 119(9/10):1027–1051CrossRefGoogle Scholar
  16. Carter A, Wyk V, de Vires B, Bachèlery P, Briole P (2006) Pits, rifts and slumps: the summit structure of Piton de la Fournaise. Bull Volcanol 67:741–756Google Scholar
  17. Corry CE (1988) Laccoliths; mechanisms of emplacement and growth. Geol Soc of Am Spec Pap 110 pGoogle Scholar
  18. Cosgrove JW, Hillier RD (1999) Forced-fold development within Tertiary sediments of the Alba Field, UKCS: evidence of differential compaction and post-depositional sandstone remobilization. Geol Soc Lond Spec Publ 169(1):61–71CrossRefGoogle Scholar
  19. de Beaumont EL (1835) Recherches sur la structure et l’origine du Mont Etna. C R Séances Acad Sci Paris 1:429–433Google Scholar
  20. De Guidi G, Imposa S, Scudero S, Palano M (2014) New evidence for Late Quaternary deformation of the substratum of Mt. Etna volcano (Sicily, Italy): clues indicate active crustal doming. Bull Volcanol 76:1–13CrossRefGoogle Scholar
  21. de Ramond P (1815) Les Monts Dômes. Memoirs Academy of Science Inst. France, p. 1–138Google Scholar
  22. de Saint-Blanquat M, Habert G, Horsman E, Morgan SS, Tikoff B, Launeau P, Gleizes G (2006) Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: the Black Mesa pluton, Henry Mountains, Utah. Tectonophysics 428:1–31CrossRefGoogle Scholar
  23. del Potro R, Pinkerton H, Hürlimann M (2009) An analysis of the morphological, geological and structural features of Teide stratovolcano, Tenerife. J Volcanol Geotherm Res 181:89–105CrossRefGoogle Scholar
  24. Delcamp A, van Wyk de Vries B, James MR, Gailler LS, Lebas E (2012) Relationships between volcano gravitational spreading and magma intrusion. Bull Volcanol 74:743–765CrossRefGoogle Scholar
  25. Delcamp A, van Wyk de Vries B, Kervyn M (2014) The Lemptégy Scoria Cone. Chaîne Puys France. doi: 10.1130/GES01007.1 Google Scholar
  26. Dixon JM, Simpson DG (1987) Centrifuge modelling of laccolith intrusion. J Struct Geol 9:87–103CrossRefGoogle Scholar
  27. Donnadieu F, Merle O (1998) Experiments on the indentation process during cryptodome intrusions: new insights into Mount St. Helens deformation. Geology 26:79–82CrossRefGoogle Scholar
  28. Druitt TH, Costa F, Deloule E, Dungan M, Scaillet B (2012) Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482:77–80CrossRefGoogle Scholar
  29. du Toit AI (1920) The Karoo dolerites. Trans Geol Soc S Afr 33:1–42Google Scholar
  30. Duffield WA, Jackson MD, Smith JG, Lowenstern JB, Clynne MA (1996) Structural doming over an upper crustal magma body at Alid, Eritrea. Eos Trans Am Geophys U 7:F792Google Scholar
  31. Duffield WA, Bullen TD, Clynne MA, Fournier RO, Janik CJ, Lanphere MA, Lowenstern J, Smith JG, Giorgis L, Kahsai G, Mariam K, Tesfai T (1997) Geothermal potential of the Alid volcanic center, Danakil Depression, Eritrea. U S Geol Surv Open File Rpt 97–291:1–62Google Scholar
  32. Durenoy P, Elie de Beaumont (1833) Mémoire sur les groupes du Cantal et du Mont-Dore et surles soulèvements auxquels ces montagnes doivent leur relief. Ann Mines t.3: 531–714Google Scholar
  33. Galland O (2012) Experimental modelling of ground deformation associated with shallow magma intrusions. Earth Planet Sci Lett 317–318:145–156CrossRefGoogle Scholar
  34. Galland O, Scheibert J (2013) Analytical model of surface uplift above axisymmetric flat-lying magma intrusions: implications for sill emplacement and geodesy. J Volcanol Geotherm Res 253:114–130CrossRefGoogle Scholar
  35. Galland O, Hallot E, Cobbold PR, Ruffet G, de Bremond d’Ars J (2007) Volcanism in a compressional Andean setting: a structural and geochronological study of Tromen volcano (Neuquén province, Argentina). Tectonics 26. doi: 10.1029/2006TC002011
  36. Galland O, Planke S, Malthe-Sørenssen A, Neumann E-R (2009) Experimental modelling of shallow magma emplacement: application to saucer-shaped intrusions. Earth Planet Sci Lett 277:373–383CrossRefGoogle Scholar
  37. Gilbert GK (1880) Report on the geology of the Henry Mountains, 2nd edn. United States Geological Survey, Washington, D.CGoogle Scholar
  38. Gorshkov GS (1959) Gigantic eruption of the volcano Bezymianny. Bull Volcanol 20:77–109CrossRefGoogle Scholar
  39. Goulty NR, Schofield N (2008) Implications of simple flexure theory for the formation of saucer-shaped sills. J Struct Geol 30(7):812–817CrossRefGoogle Scholar
  40. Grosse P, Euillades PA, Euillades LD, van Wyk de Vries B (2013) A global database of composite volcano morphometry. Bull Volcanol 76:748Google Scholar
  41. Gudmundsson A, Friese N, Galindo I, Philipp SL (2008) Dike-induced reverse faulting in a graben. Geology 36(2):123–126CrossRefGoogle Scholar
  42. Gudmunsson (2011) Deflection of dykes into sills and magma chamber formation. Tectonophysics 500:50–64CrossRefGoogle Scholar
  43. Hansen DM, Cartwright JA (2006) The three-dimensional geometry and growth of forced folds above saucer-shaped igneous sills. J Struct Geol 28:1520–1535CrossRefGoogle Scholar
  44. Hawkes L, Hawkes HK (1933) The Sandfell Laccolith and ‘Dome of Elevation’. Q J Geol Soc 89:379–398CrossRefGoogle Scholar
  45. Jackson M (1997) Processes of laccolithic emplacement in the Southern Henry Mountains, Southeastern Utah. In: Friedman JD, Huffman AC (eds.) Laccolith complexes of Southeastern Utah: time of emplacement and tectonic setting - Workshop proceedings, U.S. Geol Surv Bull 2158:51–59Google Scholar
  46. Jackson MD, Pollard DD (1990) Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah. J Struct Geol 12:185–206CrossRefGoogle Scholar
  47. Jackson CA-L, Schofield N, Golenkov B (2013) Geometry and controls on the development of igneous sill-related forced folds: a 2-D seismic reflection case study from offshore southern Australia. Geol Soc Am Bull 25:1874–1890CrossRefGoogle Scholar
  48. Johnson AM, Pollard DD (1973) Mechanics of growth of some laccolithic intrusions in the Henry mountains, Utah, I: field observations, Gilbert’s model, physical properties and flow of the magma. Tectonophysics 18:261–309CrossRefGoogle Scholar
  49. Katsui Y, Komuro H, Uda T (1985) Development of faults and growth of Usu-Shinzan cryptodome in 1977–1982 at Usu Volcano, North Japan. Journal of the Faculty of Science, Hokkaido University. Series 4, Geol Mineral 21(3): 339–362Google Scholar
  50. Kavanagh JL, Menand T, Sparks RSJ (2006) An experimental investigation of sill formation and propagation in layered elastic media. Earth Planet Sci Lett 245:799–813CrossRefGoogle Scholar
  51. Koch F, Johnson A, Pollard D (1981) Monoclinal bending of strata over laccolithic intrusions. Tectonophysics 74:T21–T31CrossRefGoogle Scholar
  52. Lagmay AMF, van Wyk de Vries B, Kerle N, Pyle DM (2000) Volcano instability induced by strike-slip faulting. Bull Volcanol 62:331–346CrossRefGoogle Scholar
  53. Lipman PW, Moore JG, Swanson DA (1981) Bulging of the northern flank before the May 18 eruption: geodetic data. US Geol Surv Prof Pap 1250:143–156Google Scholar
  54. Luhr JF, Simkin T (1993) Paricutin: the volcano born in a Mexican Cornfield. Geoscience Press, Phoenix, p 427Google Scholar
  55. Lyell C (1830) Principles of geology, being an attempt to explain the former changes of the earth’s surface by reference to causes now in operation. Murray, London, 3 volsGoogle Scholar
  56. Lyell C (1858) On the structure of lavas which have consolidated on steep slopes with remarks on the mode of origin of Mount Etna, and on the theory of “craters of elevation”. Phil Trans R Soc London 148:703–786CrossRefGoogle Scholar
  57. Magee C, Hunt-Stewart E, Jackson CA-L (2013a) Volcano growth mechanisms and the role of sub-volcanic intrusions: insights from 2D seismic reflection data. Earth Planet Sci Lett 373:41–53CrossRefGoogle Scholar
  58. Magee C, Briggs F, Jackson CA-L (2013b) Lithological controls on igneous intrusion-induced ground deformation. J Geol Soc 170:853–856CrossRefGoogle Scholar
  59. Magee C, Jackson CL, Schofield N (2014) Diachronous sub-volcanic intrusion along deep-water margins: insights from the Irish Rockall Basin. Basin Res 26:85–105CrossRefGoogle Scholar
  60. Marini A (1938) Il Vulcano Alid nella Colonia Eritrea. L’Universo. 19:51–65, 20:131–170Google Scholar
  61. Márquez A, Lopez I, Herrera R, Martín-González F, Izquierdo T, Carreño F (2008) Spreading and potential instability of Teide volcano, Tenerife, Canary Islands. Geophys Res Lets 35(5). doi: 10.1029/2007GL032625
  62. Márquez A, Herrera R, Duvert A, Gómez-de la Peña L, Granja Bruña J, Llanes Estrada M, van Wyk de Vries B (2011) The role of dome intrusions and flank spreading in the morphology of Teide volcano (Canary Islands). In AGU Fall Meet Abs (1:2599)Google Scholar
  63. Mathieu L, van Wyk de Vries B (2009) Volcano-tectonic deformation in the Mull Igneous complex. Bull Volcanol 71:1133–1148CrossRefGoogle Scholar
  64. Mathieu L, van Wyk de Vries B, Holohan EP, Troll VR (2008) Dykes, cups, saucers and sills: analogue experiments on magma intrusion into brittle rocks. Earth Planet Sci Lett 271:1–13CrossRefGoogle Scholar
  65. Menand T (2008) The mechanics and dynamics of sills in elastic layered media and their implications for the growth of laccoliths. Earth Planet Sci Lett 267:93–99CrossRefGoogle Scholar
  66. Menand T, de Saint-Blanquat M, Annen C (Eds) (2011) Emplacement of magma pulses and growth of magma bodies. Tectonophysics 500:1–2Google Scholar
  67. Merle O, Vendeville B (1992) Modélisation analogique de chevauchements induits par des intrusions magmatiques. C R Acad Sci Paris 315, série II, 1541–1547Google Scholar
  68. Merle O, Brothelande E, Lenat J-F, Bachelery P, Garaebity E (2013) A structural outline of the Yenkahe volcanic resurgent dome (Tanna Island, Vanuatu Arc, South Pacific). J Volcanol Geotherm Res 268:64–72CrossRefGoogle Scholar
  69. Michaut C (2011) Dynamics of magmatic intrusions in the upper crust: theory and applications to laccoliths on Earth and the Moon. J Geophys Res 116, B05205Google Scholar
  70. Michaut C, Manga M (2014) Domes, pits, and small chaos on Europa produced by water sills. J Geophys Res Planets 119:550–573CrossRefGoogle Scholar
  71. Minakami T, Ishikawa T, Yagi K (1951) The 1944 eruption of Volcano Usu in Hokkaido, Japan. Bull Volcanol 11:45–160CrossRefGoogle Scholar
  72. Moore JG, Albee WC (1981) Topographic and structural changes, March–July 1980—photogrammetric data. US Geol Surv Prof Pap 1250:123–134Google Scholar
  73. Morgan SA, Horsman E, Tikoff B, de Saint Blanquat M, Habert G (2008) Emplacement of multiple magma sheets and wall rock deformation: Trachyte Mesa intrusion, Henry Mountains, Utah. J Struct Geol 30:491–512CrossRefGoogle Scholar
  74. Petronis MS, Delcamp A, van Wyk de Vries B (2013) Magma emplacement into the Lemptégy scoria cone (Chaîne Des Puys, France) explored with structural, anisotropy of magnetic susceptibility, and Paleomagnetic data. Bull Volcanol 75:753CrossRefGoogle Scholar
  75. Pollard DD, Johnson AM (1973) Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, II. Bending and failure of overburden layers and sill formation. Tectonophysics 18:311–354CrossRefGoogle Scholar
  76. Polteau S, Mazzini A, Galland O, Planke S, Malthe-Sørenssen A (2008) Saucer-shaped intrusions: occurrences, emplacement and implications. Earth Planet Sci Lett 266:195–204CrossRefGoogle Scholar
  77. Quidelleur X, Gillot PY, Soler V, Lefèvre JC (2001) K/Ar dating extended into the last millennium: application to the youngest effusive episode of the Teide volcano (Spain). Geophys Res Lett 28(16):3067–3070CrossRefGoogle Scholar
  78. Reid ME, Keith TE, Kayen RE, Iverson NR, Iverson RM, Brien DL (2010) Volcano collapse promoted by progressive strength reduction: new data from Mount St. Helens. Bull Volcanol 72(6):761–766CrossRefGoogle Scholar
  79. Rocchi S, Westerman DS, Dini S, Innocenti F, Tonarini S (2002) Two-stage growth of laccoliths at Elba Island, Italy. Geology 30:983–986CrossRefGoogle Scholar
  80. Román-Berdiel T, Gapais D, Brun J-P (1995) Analogue models of laccolith formation. J Struct Geol 17:1337–1346CrossRefGoogle Scholar
  81. Scrope GP (1827) Memoir on the geology of Central France; including the volcanic formations of Auvergne, the Velay and the Vivarais, with a volume of maps and plates. Longman, LondonGoogle Scholar
  82. Scrope GP (1858) The geology and extinct volcanoes of Central France. John Murray, LondonGoogle Scholar
  83. Shoulders SJ, Cartwright J (2004) Constraining the depth and timing of large-scale conical sandstone intrusions. Geology 32:661–664CrossRefGoogle Scholar
  84. Staudigel H, Feraud G, Giannerini G (1986) The history of intrusive activity on the island of La Palma (CANARY Islands). J Volcanol Geotherm Res 27:299–322CrossRefGoogle Scholar
  85. Stearns DW (1978) Faulting and forced folding in the Rocky Mountains foreland. Geol Soc Am Mem 151:1–38CrossRefGoogle Scholar
  86. Thomson K, Schofield N (2008) Lithological and structural controls on the emplacement and morphology of sills in sedimentary basins. Geol Soc Lond Spec Publ 302:31–44CrossRefGoogle Scholar
  87. Tibaldi A, Pasquaré FA (2008) A new Mode of inner volcano growth—the “flower intrusive structure”. Earth Planet Sci Lett 271:201–208CrossRefGoogle Scholar
  88. Tibaldi A, Vezzoli L, Pasquarè FA, Rust D (2008) Strike slip fault tectonics and theemplacement of sheet-laccolith systems: the Thverfell case study (SW Iceland). J Struct Geol 30:274CrossRefGoogle Scholar
  89. Tobita M, Murakami M, Nakagawa H, Yarai H, Fujiwara S, Rosen PA (2001) 3-D surface deformation of the 2000 Usu Eruption measured by matching of SAR images. Geophys Res Lett 28(22):4291–4294CrossRefGoogle Scholar
  90. Troll VR, Walter T, Schminke H-U (2002) Cyclic caldera collapse: piston or piecemeal subsudence? Field and experimental evidence. Geology 30:135–138CrossRefGoogle Scholar
  91. Trude J, Cartwright J, Davies RJ, Smallwood J (2003) New technique for dating igneous sills. Geology 31:813–816CrossRefGoogle Scholar
  92. Tweto O (1951) Form and structure of sills near Pando, Colorado. Geol Soc Am Bull 62:507–532CrossRefGoogle Scholar
  93. Tyrell GM (1928) The geology of Arran. PhD Thesis, Glasgow University, British Geological SurveyGoogle Scholar
  94. van Bemmelen RW (1949) The Geology of Indonesia: General Geology of Indonesia and Adjacent Archipelagos. Gov. Print. Off., The Hague, NetherlandsGoogle Scholar
  95. van Wyk de Vries B (1993) Tectonic and magma evolution of Nicaraguan volcanic systems. PhD Thesis, Open University, Milton Keynes, United KingdomGoogle Scholar
  96. van Wyk de Vries B, Grosse P, Alvarado G (2006) Volcanism and volcanic landforms. In: Bundsschuh, Alvarado (Eds) The geology of Central America, 101-133 p. Bjorntrager, GermanyGoogle Scholar
  97. van Wyk de Vries B, Francis PW (1997) Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387:387–390CrossRefGoogle Scholar
  98. van Wyk de Vries B, Matela R (1998) Styles of volcano-induced deformation: numerical models of substratum flexure, spreading and extrusion. J Volcanol Geotherm Res 81:1–18CrossRefGoogle Scholar
  99. van Wyk de Vries B, Merle O (1998) Extension induced by volcanic loading in regional strike-slip zones. Geology 26:983–986CrossRefGoogle Scholar
  100. van Wyk de Vries B, Kerle N, Petley D (2000) Sector collapse forming at Casita volcano, Nicaragua. Geology 28(2):167–170CrossRefGoogle Scholar
  101. Von Buch L (1809) Geognosticche Beobachtungen aus eisen druch Deutschland und Italien. Berlin 1809Google Scholar
  102. Von Buch L (1820) Ueber die Zusammenensetzung der basaltischen Inseln und über Ehrebungs-Cratere, Prussian Academy of SceinceGoogle Scholar
  103. Von Buch L (1825) Physikalische Beschreibung der Canarischen Inseln. Royal Library, BerlinGoogle Scholar
  104. Von Buch L (1836) On volcanoes and craters of elevation. Edinb New Philos J 21:189–206Google Scholar
  105. Wilson LG (1998) Lyell: the man and his times. Geol Soc Lond Spec Publ 14:21–37CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • B. van Wyk de Vries
    • 1
    Email author
  • A. Márquez
    • 2
  • R. Herrera
    • 2
  • J. L. Granja Bruña
    • 3
  • P. Llanes
    • 3
  • A. Delcamp
    • 4
  1. 1.Laboratoire Magmas et Volcans, UMR6524 CNRS, IRD, Observatoire de Physique du Globe de ClermontUniversité Blaise Pascal, Clermont-UniversitéClermont-FerrandFrance
  2. 2.Area de Geologia, ESCETUniversidad Rey Juan CarlosMostolesSpain
  3. 3.Grupo de Tectonofisica Aplicada, Departamento de GeodinamicaUniversidad ComplutenseMadridSpain
  4. 4.Department of Geography, Earth System ScienceVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations