Bulletin of Volcanology

, 76:873 | Cite as

Magma flow paths and strain patterns in magma chambers growing by floor subsidence: a model based on magnetic fabric study of shallow-level plutons in the Štiavnica volcano–plutonic complex, Western Carpathians

  • Filip TomekEmail author
  • Jiří Žák
  • Martin Chadima
Research Article


The Miocene Štiavnica volcano–plutonic complex, Western Carpathians, exposes two nearly coeval intra-caldera plutons, their roof (basement of a stratovolcano), and associated volcanic rocks. The complex thus provides insights into mechanisms of magma chamber growth beneath large volcanoes. As inferred from the anisotropy of magnetic susceptibility (AMS), these plutons were emplaced through significantly different processes: the diorite as a discordant stock with steep fabric and the granodiorite as a tabular, bell-jar pluton. In detail, we interpret that the latter was assembled in two stages. First, an upper “layer” intruded as a thin sill along a major subhorizontal basement/cover detachment. The subhorizontal magnetic fabric and strongly oblate AMS ellipsoid in this layer record intrusive strain where the magma flow paths were subparallel to the pluton roof. Second, in the lower “layer” of the pluton, magnetic foliations dip moderately to the ∼NW and ∼WNW to vertical and are associated with down-dip to subhorizontal lineations and prolate to weakly oblate shapes of the AMS ellipsoids. Such a fabric pattern is compatible with piecemeal floor subsidence, where magma flowed along multiple subsiding fault-bounded blocks. Based on this case example, we develop a conceptual model for magma flow paths and strain patterns for four main modes of floor subsidence: (1) piston (cauldron) subsidence is characterized by convergent flow and radial principal stretching above the magma chamber floor; (2) the piecemeal floor subsidence leads to steep to inclined magma flow paths in conduits along fault-bounded blocks; (3) asymmetric (trapdoor) subsidence produces first divergent flow paths near the conduit sides, changing into convergent paths in the narrower space near the kinematic hinge; and (4) symmetric cantilever (funnel) subsidence will lead to divergent flow from a central feeder and thus circumferential principal stretching of the magma. If the growing pluton develops a “two-layer” structure, all the flow paths and associated strains are affected by the flat-lying pluton roof and will convert into horizontal flattening as the roof is approached.


Anisotropy of magnetic susceptibility (AMS) Caldera Intrusive strain Magma emplacement Pluton floor subsidence Stratovolcano 



Constructive comments to the original manuscript by Michael S. Petronis, Alexander R. Cruden, and Bernard Henry, as well as careful editorial handling by Agust Gudmundsson and James D. L. White are highly appreciated. František Hrouda, Peter Koděra, and František V. Holub are thanked for valuable discussions and Jan Flašar for help with the digital elevation model. This study is part of the Ph.D. research of Filip Tomek, supported by the Charles University projects PRVOUK P44, SVV261203, Grant Agency of the Czech Republic Grant No. P210/12/1385 (to Jiří Žák) and Academy of Sciences of the Czech Republic Research Plan RVO 67985831.

Supplementary material

445_2014_873_Fig13_ESM.gif (54 kb)

(GIF 53 kb)

445_2014_873_MOESM1_ESM.tif (1.5 mb)
High Resolution Image (TIFF 1559 kb)
445_2014_873_MOESM2_ESM.pdf (434 kb)
ESM 2 (PDF 434 kb)
445_2014_873_MOESM3_ESM.pdf (121 kb)
ESM 3 (PDF 121 kb)
445_2014_873_MOESM4_ESM.pdf (510 kb)
ESM 4 (PDF 509 kb)
445_2014_873_MOESM5_ESM.pdf (123 kb)
ESM 5 (PDF 123 kb)


  1. Bielik M, Šefara J, Kováč M, Bezák V, Plašienka D (2004) The Western Carpathians—interaction of Hercynian and Alpine processes. Tectonophysics 393:63–86. doi: 10.1016/j.tecto.2004.07.044 CrossRefGoogle Scholar
  2. Bonin B, Ethien R, Gerbe MC, Cottin JY, Feraud G, Gagnevin D, Giret A, Michon G, Moine B (2004) The Neogene to recent Rallier-du-Baty nested ring complex, Kerguelen Archipelago (TAAF, Indian Ocean): stratigraphy revisited, implications for cauldron subsidence mechanisms. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geol Soc London Spec Pub 234:125–149. doi: 10.1144/GSL.SP.2004.234.01.08
  3. Borradaile GJ, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42:49–93. doi: 10.1016/S0012-8252(96)00044-X CrossRefGoogle Scholar
  4. Borradaile GJ, Jackson M (2010) Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). J Struct Geol 32:1519–1551. doi: 10.1016/j.jsg.2009.09.006 CrossRefGoogle Scholar
  5. Burchardt S, Tanner D, Krumbholz M (2012) The Slaufrudalur pluton, southeast Iceland—an example of shallow magma emplacement by coupled cauldron subsidence and magmatic stoping. Geol Soc Am Bull 124:213–227. doi: 10.1130/B30430.1 CrossRefGoogle Scholar
  6. Callot JP, Guichet X (2003) Rock texture and magnetic lineation in dykes: a simple analytical model. Tectonophysics 366:207–222. doi: 10.1016/S0040-1951(03)00096-9 CrossRefGoogle Scholar
  7. Canales JP, Nedimovic MR, Kent GM, Carbotte SM, Detrick RS (2009) Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca ridge. Nature 460:89–93. doi: 10.1038/nature08095 CrossRefGoogle Scholar
  8. Chadima M, Jelínek V (2009) Anisoft 4.2: Anisotropy data browser for Windows. Agico, IncGoogle Scholar
  9. Clough CT, Maufe HB, Bailey EB (1909) The cauldron subsidence of Glen Coe and the associated igneous phenomena. Q J Geol Soc London 65:611–678. doi: 10.1144/GSL.JGS.1909.065.01-04.35 CrossRefGoogle Scholar
  10. Cobbing EJ, Pitcher WS (1972) The Coastal Batholith of central Peru. J Geol Soc London 128:421–454. doi: 10.1144/gsjgs.128.5.0421 CrossRefGoogle Scholar
  11. Cogné JP, Perroud H (1988) Anisotropy of magnetic susceptibility as a strain gauge in the Flamanville granite, NW France. Phys Earth Planet Int 51:264–270. doi: 10.1016/0031-9201(88)90068-4 CrossRefGoogle Scholar
  12. Corry CE (1988) Laccoliths: mechanics of emplacement and growth. Geol Soc Am Spec Paper 220:1–114. doi: 10.1130/SPE220-p1 CrossRefGoogle Scholar
  13. Cruden AR (1990) Flow and fabric development during the diapiric rise of magma. J Geol 98:681–698Google Scholar
  14. Cruden AR (1998) On the emplacement of tabular granites. J Geol Soc London 155:853–862. doi: 10.1144/gsjgs.155.5.0853 CrossRefGoogle Scholar
  15. Cruden AR, McCaffrey KJW (2001) Growth of plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Phys Chem Earth 26:303–315. doi: 10.1016/S1464-1895(01)00060-6
  16. Cruden AR, Tobisch OT, Launeau P (1999) Magnetic fabric evidence for conduit-fed emplacement of a tabular intrusion: Dinkey Creek Pluton, central Sierra Nevada batholith, California. J Geophys Res 104:10511–10530. doi: 10.1029/1998JB900093
  17. Froitzheim N, Plašienka D, Schuster R (2008) Alpine tectonics of the Alps and Western Carpathians. In: McCann T (ed) The geology of Central Europe. Volume 2: Mesozoic and Cenozoic. Geological Society, London, pp 1141–1232Google Scholar
  18. Furman T, Meyer PS, Frey F (1992) Evolution of Icelandic central volcanoes—evidence from the Austurhorn intrusion, southeastern Iceland. Bull Volcanol 55:45–62. doi: 10.1007/BF00301119 CrossRefGoogle Scholar
  19. Geoffroy L, Callot JP, Aubourg C, Moreira M (2002) Magnetic and plagioclase linear fabric discrepancy in dykes: a new way to define the flow vector using magnetic foliation. Terra Nova 14:183–190. doi: 10.1046/j.1365-3121.2002.00412.x CrossRefGoogle Scholar
  20. Grocott J, Arevalo C, Welkner D, Cruden A (2009) Fault-assisted vertical pluton growth: Coastal Cordillera, north Chilean Andes. J Geol Soc London 166:295–301. doi: 10.1144/0016-76492007-165 CrossRefGoogle Scholar
  21. Gudmundsson A (2011) Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics 500:50–64. doi: 10.1016/j.tecto.2009.10.015 CrossRefGoogle Scholar
  22. Gudmundsson A (2012) Magma chambers: formation, local stresses, excess pressures, and compartments. J Volcanol Geotherm Res 237–238:19–41. doi: 10.1016/j.jvolgeores.2012.05.015 CrossRefGoogle Scholar
  23. Harangi S, Downes H, Thirlwall M, Gmeling K (2007) Geochemistry, petrogenesis and geodynamic relationships of Miocene calc-alkaline volcanic rocks in the Western Carpathian Arc, Eastern Central Europe. J Petrol 48:2261–2287. doi: 10.1093/petrology/egm059 CrossRefGoogle Scholar
  24. He B, Xu YG, Paterson S (2009) Magmatic diapirism of the Fangshan pluton, southwest of Beijing, China. J Struct Geol 31:615–626. doi: 10.1016/j.jsg.2009.04.007 CrossRefGoogle Scholar
  25. Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82. doi: 10.1007/BF01450244 CrossRefGoogle Scholar
  26. Hrouda F, Kahan Š (1991) The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Mountains. N Slovakia J Struct Geol 13:431–442. doi: 10.1016/0191-8141(91)90016-C CrossRefGoogle Scholar
  27. Hrouda F, Lanza R (1989) Magnetic fabric in the Biella and Traversella stocks (Periadriatic Line): implications for the mode of emplacement. Phys Earth Planet Inter 56:337–348. doi: 10.1016/0031-9201(89)90168-4 CrossRefGoogle Scholar
  28. Huges RA, Evans JA, Noble SR, Rundle CC (1996) U–Pb chronology of the Ennerdale and Eskdale intrusions supports sub-volcanic relationships with the Borrowdale Volcanic Group (Ordovician, English Lake District). J Geol Soc London 153:33–38. doi: 10.1144/gsjgs.153.1.0033 CrossRefGoogle Scholar
  29. Jelínek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:T63–T67. doi: 10.1016/0040-1951(81)90110-4
  30. Karell F, Ehlers C, Airo ML, Selonen O (2009) Intrusion mechanisms and magnetic fabrics of the Vehmaa rapakivi granite batholith in SW Finland. Geotect Res 96:53–68. doi: 10.1127/1864-5658/09/96-0053 CrossRefGoogle Scholar
  31. Koděra P, Lexa J, Rankin AH, Fallick AE (2004) Fluid evolution in a subvolcanic granodiorite pluton related to Fe and Pb–Zn mineralization, Banská Štiavnica ore district, Slovakia. Econ Geol 99:1745–1770. doi: 10.2113/gsecongeo.99.8.1745 Google Scholar
  32. Koděra P, Lexa J, Rankin AH, Fallick AE (2005) Epithermal gold veins in a caldera setting: Banská Hodruša, Slovakia. Miner Deposita 39:921–943. doi: 10.1007/s00126-004-0449-5 CrossRefGoogle Scholar
  33. Konečný V (1971) Evolutionary stages of the Banská Štiavnica caldera and its post-volcanic structures. Bull Volcanol 35:95–116. doi: 10.1007/BF02596810 CrossRefGoogle Scholar
  34. Konečný P (2002) Evolution of magmatic reservoir underneath the Štiavnica stratovolcano. Dissertation, Comenius University, BratislavaGoogle Scholar
  35. Konečný P, Lexa J, Hostričová V (1995) The Central Slovakia Neogene volcanic field: a review. Acta Vulcanol 7:63–78Google Scholar
  36. Konečný V, Lexa J, Halouzka R, et al (1998a) Explanations to the geological map of the Štiavnické vrchy and Pohronský Inovec mountain ranges (Štiavnica stratovolcano), State Geological Institute of Dionýz Štúr, BratislavaGoogle Scholar
  37. Konečný V, Lexa J, Halouzka R, et al (1998b) Geologic map of Štiavnické vrchy a Pohronský Inovec mountain ranges 1: 50,000, State Geological Institute of Dionýz Štúr, BratislavaGoogle Scholar
  38. Konečný V, Kováč M, Lexa J, Šefara J (2002) Neogene evolution of the Carpatho–Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGU Stephan Mueller Spec Publ Ser 1:105–123CrossRefGoogle Scholar
  39. Lexa J, Štohl J, Konečný V (1999) The Banská Štiavnica ore district: relationship between metallogenetic processes and the geological evolution of a stratovolcano. Miner Deposita 34:639–654. doi: 10.1007/s001260050225 CrossRefGoogle Scholar
  40. Lipman PW (1984) The roots of ash flow calderas in Western North America: windows into the tops of granitic batholiths. J Geophys Res 89:8801–8841. doi: 10.1029/JB089iB10p08801 CrossRefGoogle Scholar
  41. Lipman PW (2007) Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain volcanic field. Geosphere 3:42–70. doi: 10.1130/GES00061.1 CrossRefGoogle Scholar
  42. McIntosh WC, Chapin CE (2004) Geochronology of the central Colorado volcanic field. New Mexico Bureau Geol Min Res Bull 16:205–238Google Scholar
  43. McNulty BA, Tobisch OT, Cruden AR, Gilder S (2000) Multistage emplacement of the Mount Givens pluton, central Sierra Nevada batholith, California. Geol Soc Am Bull 112:119–135. doi: 10.1130/0016-7606(2000)112 CrossRefGoogle Scholar
  44. Miller RB, Paterson SR (1999) In defense of magmatic diapirs. J Struct Geol 21:1161–1173. doi: 10.1016/S0191-8141(99)00033-4 CrossRefGoogle Scholar
  45. Myers JS (1975) Cauldron subsidence and fluidization: mechanisms of intrusion of the Coastal Batholith of Peru into its own volcanic ejecta. Geol Soc Am Bull 86:1209–1220. doi: 10.1130/0016-7606(1975)86 CrossRefGoogle Scholar
  46. Nagaoka Y, Nishida K, Aoki Y, Takeo M, Ohminato T (2012) Seismic imaging of magma chamber beneath an active volcano. Earth Planet Sci Lett 333–334:1–8. doi: 10.1016/j.epsl.2012.03.034 CrossRefGoogle Scholar
  47. Nagata T (1962) Rock magnetism. Maruzen, TokyoGoogle Scholar
  48. Nelson ST, Davidson JP, Heizler MT, Kowallis BJ (1999) Tertiary tectonic history of the southern Andes: the subvolcanic sequence to the Tatara–San Pedro volcanic complex, lat 36°S. Geol Soc Am Bull 111:1387–1404. doi: 10.1130/0016-7606(1999)111 CrossRefGoogle Scholar
  49. Němčok M, Konečný P, Lexa O (2000) Calculations of tectonic, magmatic and residual stress in the Stiavnica stratovolcano, Western Carpathians: implications for mineral precipitation paths. Geol Carpath 51:19–36Google Scholar
  50. O’Driscoll B, Troll VR, Reavy RJ, Turner P (2006) The Great Eucrite intrusion of Ardnamurchan, Scotland: reevaluating the ring-dike concept. Geology 34:189–192. doi: 10.1130/G22294.1 CrossRefGoogle Scholar
  51. Paterson SR, Farris DW (2008) Downward host rock transport and the formation of rim monoclines during the emplacement of Cordilleran batholiths. Trans Roy Soc Edinb Earth Sci 97:397–413. doi: 10.1017/S026359330000153X CrossRefGoogle Scholar
  52. Paterson S, Vernon R (1995) Bursting the bubble of ballooning plutons: a return to nested diapirs emplaced by multiple processes. Geol Soc Am Bull 107:1356–1380. doi: 10.1130/0016-7606(1995)107 CrossRefGoogle Scholar
  53. Paterson SR, Fowler TK, Miller RB (1996) Pluton emplacement in arcs: a crustal-scale exchange process. Geol Soc Am Spec Paper 315:115–123. doi: 10.1130/0-8137-2315-9.115 Google Scholar
  54. Paterson SR, Fowler TK, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82. doi: 10.1016/S0024-4937(98)00022-X CrossRefGoogle Scholar
  55. Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetković V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57:511–530Google Scholar
  56. Petronis MS, O’Driscoll B (2013) Emplacement of the early Miocene Pinto Peak intrusion, Southwest Utah, USA. Geochemistry, Geophys Geosystems 14:5128–5145. doi: 10.1002/2013GC004930 CrossRefGoogle Scholar
  57. Petronis MS, Hacker DB, Holm DK, Geissman JW, Harlan SS (2004) Magmatic flow paths and palaeomagnetism of the Miocene Stoddard Mountain laccolith, Iron Axis region, Southwestern Utah, USA. In: Martín-Hernández F, Lüneburg CM, Aubourg C, Jackson M (eds) Magnetic fabric: methods and application. Geol Soc London Spec Publ 238:251–283. doi: 10.1144/GSL.SP.2004.238.01.16
  58. Philpotts AR, Philpotts DE (2007) Upward and downward flow in a camptonite dike as recorded by deformed vesicles and the anisotropy of magnetic susceptibility (AMS). J Volcanol Geotherm Res 161:81–94. doi: 10.1016/j.jvolgeores.2006.11.006 CrossRefGoogle Scholar
  59. Plašienka D (2003) Development of basement-involved fold and thrust structures exemplified by the Tatric–Fatric–Veporic nappe system of the Western Carpathians (Slovakia). Geodin Acta 16:21–38. doi: 10.1016/S0985-3111(02)00003-7 CrossRefGoogle Scholar
  60. Ramsay JG (1989) Emplacement kinematics of a granite diapir: the Chindamora batholith, Zimbabwe. J Struct Geol 11:191–209. doi: 10.1016/0191-8141(89)90043-6 CrossRefGoogle Scholar
  61. Roobol MJ (1974) The geology of the Vesturhorn intrusion, SE Iceland. Geol Mag 111:273–286. doi: 10.1017/S001675680003867X CrossRefGoogle Scholar
  62. Seager WR, McCurry M (1988) The cogenetic Organ cauldron and batholith, South Central New Mexico: evolution of a large-volume ash flow cauldron and its source magma chamber. J Geophys Res 93:4421–4433. doi: 10.1029/JB093iB05p04421 CrossRefGoogle Scholar
  63. Štohl J, Hojstričová V, Lexa J, Rojkovičová L, Žáková E, Gargulák M, Staňa Š, Kantor J, Ďurkovičová J (1990) Evaluation of the bore hole B-1/2000 m, Horná Roveň. Open file report. State Geological Institute of Dionýz Štúr, BratislavaGoogle Scholar
  64. Tarling DH, Hrouda F (1993) Magnetic anisotropy of rocks. Chapman and Hall, LondonGoogle Scholar
  65. Twiss RJ, Moores EM (1992) Structural geology. Freeman, New YorkGoogle Scholar
  66. Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. Electronic Geosci 5:1–23. doi: 10.1007/s10069-000-0002-3 Google Scholar
  67. Vernon RH, Johnson SE, Melis EA (2004) Emplacement-related microstructures in the margin of a deformed pluton: the San José tonalite, Baja California, México. J Struct Geol 26:1867–1884. doi: 10.1016/j.jsg.2004.02.007
  68. Wyss M, Shimazaki K, Wiemer S (1997) Mapping active magma chambers by b values beneath the off-Ito volcano, Japan. J Geophys Res 102:20413–20422. doi: 10.1029/97JB01074 CrossRefGoogle Scholar
  69. Yoshinobu AS, Fowler TK, Paterson SR, Llambias E, Tickyj H, Sato AM (2003) A view from the roof: magmatic stoping in the shallow crust, Chita pluton, Argentina. J Struct Geol 25:1037–1048. doi: 10.1016/S0191-8141(02)00149-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Geology and Paleontology, Faculty of ScienceCharles UniversityPragueCzech Republic
  2. 2.Institute of GeologyAcademy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.AGICO IncBrnoCzech Republic

Personalised recommendations