Advertisement

Bulletin of Volcanology

, 76:855 | Cite as

Experimental study of dense pyroclastic density currents using sustained, gas-fluidized granular flows

  • Pete J. RowleyEmail author
  • Olivier Roche
  • Timothy H. Druitt
  • Ray Cas
Research Article

Abstract

We present the results of laboratory experiments on the behaviour of sustained, dense granular flows in a horizontal flume, in which high-gas pore pressure was maintained throughout the flow duration by continuous injection of gas through the flume base. The flows were fed by a sustained (0.5–30 s) supply of fine (75 ± 15 μm) particles from a hopper; the falling particles impacted an impingement surface at concentrations of ~3 to 45 %, where they densified rapidly to generate horizontally moving, dense granular flows. When the gas supplied through the flume base was below the minimum fluidization velocity of the particles (i.e. aerated flow conditions), three flow phases were identified: (i) an initial dilute spray of particles travelling at 1–2 m s−1, followed by (ii) a dense granular flow travelling at 0.5–1 m s−1, then by (iii) sustained aggradation of the deposit by a prolonged succession of thin flow pulses. The maximum runout of the phase 2 flow was linearly dependent on the initial mass flux, and the frontal velocity had a square-root dependence on mass flux. The frontal propagation speed during phase 3 had a linear relationship with mass flux. The total mass of particles released had no significant control on either flow velocity or runout in any of the phases. High-frequency flow unsteadiness during phase 3 generated deposit architectures with progradational and retrogradational packages and multiple internal erosive contacts. When the gas supplied through the flume base was equal to the minimum fluidization velocity of the particles (i.e. fluidized flow conditions), the flows remained within phase 2 for their entire runout, no deposit formed and the particles ran off the end of the flume. Sustained granular flows differ significantly from instantaneous flows generated by lock-exchange mechanisms, in that the sustained flows generate (by prolonged progressive aggradation) deposits that are much thicker than the flowing layer of particles at any given moment. The experiments offer a first attempt to investigate the physics of the sustained pyroclastic flows that generate thick, voluminous ignimbrites.

Keywords

Fluidization Pyroclastic flow Density current Pore pressure Sustained supply Experiments 

Notes

Acknowledgments

PR was supported by a Université Blaise Pascal postdoctoral fellowship, with experimental work funded by a grant from the volcanology group of the Laboratoire Magmas et Volcans. This is Laboratory of Excellence ClerVolc (ANR-10-LABX-0006) contribution number 106. We thank the reviewers B. Andrews and C. Wilson, whose comments and suggestions significantly improved this manuscript.

Supplementary material

Online Resource 1 (MPG 74368 kb)

References

  1. Andrews B, Manga M (2011) Effects of topography on pyroclastic density current runout and formation of coignimbrites. Geology 39(12):1099–1103. doi:1010.1130/G32226.32221Google Scholar
  2. Andrews BJ, Manga M (2012) Experimental study of turbulence, sedimentation, and coignimbrite mass partitioning in dilute pyroclastic density currents. J Volcanol Geotherm Res 225:30–44. doi: 10.1016/j.jvolgeores.2012.02.011 CrossRefGoogle Scholar
  3. Bareschino P, Lirer L, Marzocchella A, Petrosino P, Salatino P (2008) Self-fluidization of subaerial rapid granular flows. Powder Technol 182:323–333. doi: 10.1016/j.powtec.2007.12.010 CrossRefGoogle Scholar
  4. Bernal J, Mason J (1960) Packing of spheres: Coordination of randomly packed spheres. Nature 188:910–911. doi: 10.1038/188910a0 CrossRefGoogle Scholar
  5. Boudet J, Amarouchene Y, Bonnier B, Kellay H (2007) The granular jump. J Fluid Mech 572:413–432. doi: 10.1017/S002211200600365X CrossRefGoogle Scholar
  6. Branney MJ, Kokelaar P (1997) Giant bed from a sustained catastrophic density current flowing over topography: Acatlan ignimbrite, Mexico. Geology 25:115–118. doi: 10.1130/0091-7613(1997)025<0115:GBFASC>2.3.CO;2 CrossRefGoogle Scholar
  7. Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc London Memoir, 27Google Scholar
  8. Brown RJ, Branney MJ (2004a) Bypassing and diachronous deposition from density currents: Evidence from a giant regressive bed form in the Poris ignimbrite, Tenerife, Canary Islands. Geology 32:445–448. doi: 10.1130/G20188.1 CrossRefGoogle Scholar
  9. Brown RJ, Branney MJ (2004b) Event-stratigraphy of a caldera-forming ignimbrite eruption on Tenerife: the 273 ka Poris formation. Bull Volcanol 66:392–416. doi: 10.1007/s00445-003-0321-y CrossRefGoogle Scholar
  10. Brown RJ, Kokelaar B, Branney MJ (2007) Widespread transport of pyroclastic density currents from a large silicic tuff ring: the Glaramara tuff, Scafell caldera, English Lake District, UK. Sedimentology 54:1163–1190. doi: 10.1111/j.1365-3091.2007.00877.x CrossRefGoogle Scholar
  11. Calder E, Sparks R, Gardeweg M (2000) Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile. J Volcanol Geotherm Res 104:201–235. doi: 10.1016/S0377-0273(00)00207-9 CrossRefGoogle Scholar
  12. Carlevaro CM, Pugnaloni LA (2012) Arches and contact forces in a granular pile. Eur Phys J E 35:1–7. doi: 10.1140/epje/i2012-12044-7 CrossRefGoogle Scholar
  13. Cas RA, Wright HM, Folkes CB, Lesti C, Porreca M, Giordano G, Viramonte JG (2011) The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types. Bull Volcanol 73:1583–1609. doi: 10.1007/s00445-011-0564-y CrossRefGoogle Scholar
  14. Chédeville C, Roche O (2014) Autofluidization of pyroclastic flows propagating on rough substrates as shown by laboratory experiments. J Geophys Res 119:1764–1776. doi: 10.1002/2013JB010554 CrossRefGoogle Scholar
  15. Dellino P, La Volpe L (2000) Structures and grain size distribution in surge deposits as a tool for modelling the dynamics of dilute pyroclastic density currents at La Fossa di Vulcano (Aeolian Islands, Italy). J Volcanol Geotherm Res 96:57–78. doi: 10.1016/S0377-0273(99)00140-7 CrossRefGoogle Scholar
  16. Dellino P, Zimanowski B, Büttner R, La Volpe L, Mele D, Sulpizio R (2007) Large-scale experiments on the mechanics of pyroclastic flows: Design, engineering, and first results. J Geophys Res 112:B04202. doi: 10.1029/2006JB004313 Google Scholar
  17. Doronzo DM, Dellino P (2014) Pyroclastic density currents and local topography as seen with the conveyer model. J Volcanol Geotherm Res 278:25–39. doi: 10.1016/j.jvolgeores.2014.03.012 CrossRefGoogle Scholar
  18. Druitt TH (1998) Pyroclastic density currents. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive volcanic eruptions. Special Publications 145, London, pp 145–182Google Scholar
  19. Druitt TH, Bruni G, Lettieri P, Yates JG (2004) The fluidization behaviour of ignimbrite at high temperature and with mechanical agitation. Geophys Res Lett 31, L02604. doi: 10.1029/2003GL018593 CrossRefGoogle Scholar
  20. Druitt TH, Avard G, Bruni G et al (2007) Gas retention in fine-grained pyroclastic flow materials at high temperatures. Bull Volcanol 69:881–901. doi: 10.1007/s00445-007-0116-7 CrossRefGoogle Scholar
  21. Dufek J, Bergantz G (2007a) Suspended load and bed-load transport of particle-laden gravity currents: the role of particle-bed interaction. Theor Comp Fluid Dyn 21:119–145. doi: 10.1007/s00162-007-0041-6 CrossRefGoogle Scholar
  22. Dufek J, Bergantz GW (2007b) Dynamics and deposits generated by the Kos Plateau Tuff eruption: Controls of basal particle loss on pyroclastic flow transport. Geochem Geophy Geosy 8:1525–2027CrossRefGoogle Scholar
  23. Dufek J, Wexler J, Manga M (2009) Transport capacity of pyroclastic density currents: Experiments and models of substrate-flow interaction. J Geophys Res 114:B11203. doi: 10.1029/2007GC001741 CrossRefGoogle Scholar
  24. Eames I, Gilbertson M (2000) Aerated granular flow over a horizontal rigid surface. J Fluid Mech 424:169–195. doi: 10.1017/S0022112000001920 CrossRefGoogle Scholar
  25. Esposti-Ongaro T, Barsotti S, Neri A, Salvetti MV (2011) Large-eddy simulation of pyroclastic density currents. In: Salvetti MV, Geurts B, Meyers J, Sagaut P (eds) Quality and reliability of large-eddy simulations II. Springer, Netherlands, pp 161–170. doi: 10.1007/978-94-007-0231-8_15 CrossRefGoogle Scholar
  26. Fan L-S, Zhu C (2005) Principles of gas-solid flows. Cambridge University Press, USAGoogle Scholar
  27. Fierstein J, Wilson CJN (2005) Assembling an ignimbrite: Compositionally-defined flow packages in the 1912 valley of ten thousand smokes ignimbrite, Alaska. Geol Soc Am Bull 117:1094–1107. doi: 10.1130/B25621.1 CrossRefGoogle Scholar
  28. Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of a large-volume pyroclastic flow—Emplacement of the Campanian ignimbrite, Italy. J Volcanol Geotherm Res 56:205–220. doi: 10.1016/0377-0273(93)90017-L CrossRefGoogle Scholar
  29. Geldart D (1972) The effect of particle size and size distribution on the behaviour of gas-fluidised beds. Powder Technol 6:201–215. doi: 10.1016/0032-5910(72)83014-6 CrossRefGoogle Scholar
  30. Geldart D (1973) Types of gas fluidization. Powder Technol 7:285–292. doi: 10.1016/0032-5910(73)80037-3 CrossRefGoogle Scholar
  31. Gilbertson MA, Eames I (2003) The influence of particle size on the flow of fluidised powders. Powder Technol 131:197–205. doi: 10.1016/S0032-5910(02)00343-1 CrossRefGoogle Scholar
  32. Gilbertson MA, Jessop DE, Hogg AJ (2008) The effects of gas flow on granular currents. Phil Trans R Soc A 366:2191–2203. doi: 10.1098/rsta.2007.0021 CrossRefGoogle Scholar
  33. Giordano G (1998) The effect of paleotopography on lithic distribution and facies associations of small volume ignimbrites: the WTT Cupa (Roccamonfina volcano, Italy). J Volcanol Geotherm Res 87:255–273. doi: 10.1016/S0377-0273(98)00096-1 CrossRefGoogle Scholar
  34. Girolami L, Druitt TH, Roche O, Khrabrykh Z (2008) Propagation and hindered settling of laboratory ash flows. J Geophys Res 113, B02202. doi: 10.1029/2007JB005074 Google Scholar
  35. Hayashi J, Self S (1992) A comparison of pyroclastic flow and debris avalanche mobility. J Geophys Res 97:9063–9071. doi: 10.1029/92JB00173 CrossRefGoogle Scholar
  36. Hoblitt RP (1986) Observations of the eruptions of July 22 and August 7, 1980, at Mount St. Helens, Washington. USGS Professional Paper 1335Google Scholar
  37. Iverson RM, LaHusen RG (1989) Dynamic pore-pressure fluctuations in rapidly shearing granular materials. Science 246:796–799. doi: 10.1126/science.246.4931.796 CrossRefGoogle Scholar
  38. Loughlin S, Baxter P, Aspinall W et al (2002) Eyewitness accounts of the 25 June 1997 pyroclastic flows and surges at Soufrière Hills Volcano, Montserrat, and implications for disaster mitigation. Geol Soc London Memoirs 21:211–230. doi: 10.1144/GSL.MEM.2002.021.01.10 CrossRefGoogle Scholar
  39. Lube G, Cronin SJ, Platz T et al (2007) Flow and deposition of pyroclastic granular flows: a type example from the 1975 Ngauruhoe eruption, New Zealand. J Volcano Geotherm Res 161:165–186. doi: 10.1016/j.jvolgeores.2006.12.003 CrossRefGoogle Scholar
  40. Middleton GV (1966) Experiments on density and turbidity currents: I. motion of the head. Can J Earth Sci 3:523–546. doi: 10.1139/e66-038 CrossRefGoogle Scholar
  41. MiDi GDR (2004) On dense granular flows. Eur Phys J E 14:341–365. doi: 10.1140/epje/i2003-10153-0 CrossRefGoogle Scholar
  42. Nakashima K, Johno Y, Shigematsu T (2009) Free fall characteristics of particle clusters in a vertical pipe. J Phys: Conf Ser 147:012070. doi: 10.1088/1742-6596/147/1/012070 Google Scholar
  43. Nezzal A, Large J, Guigon P (1998) Fluidisation behaviour of very cohesive powders under mechanical agitation. In: Fluidization VIII, Proc Eighth Engineering Foundation Conference on Fluidization, May 14–19. Am Inst Chem Eng 77–82Google Scholar
  44. Palladino DM, Valentine GA (1995) Coarse-tail vertical and lateral grading in pyroclastic flow deposits of the Latera Volcanic Complex (Vulsini, central Italy): Origin and implications for flow dynamics. J Volcanol Geotherm Res 69:343–364. doi: 10.1016/0377-0273(95)00036-4 CrossRefGoogle Scholar
  45. Pittari A, Cas R, Edgar C, Nichols HJ, Wolff JA, Marti J (2006) The influence of palaeotopography on facies architecture and pyroclastic flow processes of a lithic-rich ignimbrite in a high gradient setting: the Abrigo Ignimbrite, Tenerife, Canary Islands. J Volcanol Geotherm Res 152:273–315. doi: 10.1016/j.jvolgeores.2005.10.007 CrossRefGoogle Scholar
  46. Rhodes MJ (2008) Introduction to particle technology. Wiley, ChichesterCrossRefGoogle Scholar
  47. Roche O (2012) Depositional processes and gas pore pressure in pyroclastic flows: an experimental perspective. Bull Volcanol 74:1807–1820. doi: 10.1007/s00445-012-0639-4 CrossRefGoogle Scholar
  48. Roche O, Gilbertson MA, Phillips JC, Sparks RSJ (2004) Experimental study of gas-fluidized granular flows with implications for pyroclastic flow emplacement. J Geophys Res 109:B10201. doi: 10.1029/2003JB002916 CrossRefGoogle Scholar
  49. Roche O, Gilbertson MA, Phillips JC, Sparks RSJ (2006) The influence of particle size on the flow of initially fluidised powders. Powder Technol 166:167–174. doi: 10.1016/j.powtec.2006.05.010 CrossRefGoogle Scholar
  50. Roche O, Montserrat S, Niño Y, Tamburrino A (2008) Experimental observations of water-like behavior of initially fluidized, unsteady dense granular flows and their relevance for the propagation of pyroclastic flows. J Geophys Res 113:B12203. doi: 10.1029/2008JB005664 CrossRefGoogle Scholar
  51. Roche O, Montserrat S, Niño Y, Tamburrino A (2010) Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: Insights into the emplacement dynamics of pyroclastic flows. J Geophys Res 115:B09206. doi: 10.1029/2009JB007133 Google Scholar
  52. Roche O, Attali M, Mangeney A, Lucas A (2011) On the run-out distance of geophysical gravitational flows: Insight from fluidized granular collapse experiments. Earth Planet Sci Lett 311:375–385. doi: 10.1016/j.epsl.2011.09.023 CrossRefGoogle Scholar
  53. Rowley PJ, Kokelaar P, Menzies M, Waltham D (2011) Shear-derived mixing in dense granular flows. J of Sed Res 81:874–884. doi: 10.2110/jsr.2011.72 CrossRefGoogle Scholar
  54. Savage SB, Oger L (2013) Airslide flows, part 1-experiments, review and extension. Chem Eng Sci 91:35–43. doi: 10.1016/j.ces.2012.12.043 CrossRefGoogle Scholar
  55. Schellart W (2000) Shear test results for cohesion and friction coefficients for different granular materials: Scaling implications for their usage in analogue modelling. Tectonophysics 324:1–16. doi: 10.1016/S0040-1951(00)00111-6 CrossRefGoogle Scholar
  56. Schmincke H-U, Fisher RV, Waters AC (1973) Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany. Sedimentology 20:553–574. doi: 10.1111/j.1365-3091.1973.tb01632.x CrossRefGoogle Scholar
  57. Simpson JE (1999) Gravity currents: In the environment and the laboratory. Cambridge University Press, CambridgeGoogle Scholar
  58. Song C, Wang P, Makse HA (2008) A phase diagram for jammed matter. Nature 453:629–632. doi: 10.1038/nature06981 CrossRefGoogle Scholar
  59. Sparks RSJ (1976) Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23:147–188. doi: 10.1111/j.1365-3091.1976.tb00045.x CrossRefGoogle Scholar
  60. Sparks RSJ, Self S, Walker GPL (1973) Products of ignimbrite eruptions. Geology 1:115–118. doi: 10.1130/0091-7613(1973)1<115:POIE>2.0.CO;2 CrossRefGoogle Scholar
  61. Valentine GA, Buesch DC, Fisher RV (1989) Basal layered deposits of the Peach Springs Tuff, northwestern Arizona, USA. Bull Volcanol 51:395–414. doi: 10.1007/BF01078808 CrossRefGoogle Scholar
  62. Walton OR, Braun RL (1986) Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J Rheol 30:949–980. doi: 10.1122/1.549893 CrossRefGoogle Scholar
  63. Williams R, Branney MJ, Barry TL (2014) Temporal and spatial evolution of a waxing then waning catastrophic density current revealed by chemical mapping. Geology 42:107–110, doi:110.1130/G34830.34831Google Scholar
  64. Wilson CJN (1980) The role of fluidization in the emplacement of pyroclastic flows: an experimental approach. J Volcanol Geotherm Res 8:231–249. doi: 10.1016/0377-0273(80)90106-7 CrossRefGoogle Scholar
  65. Wilson CJN, Hildreth W (2003) Assembling an ignimbrite: Mechanical and thermal building blocks in the Bishop Tuff, California. J Geol 111:653–670. doi: 10.1086/378335 CrossRefGoogle Scholar
  66. Wohletz KH, McGetchin T, Sandford M II, Jones E (1984) Hydrodynamic aspects of caldera-forming eruptions: Numerical models. J Geophys Res 89:8269–8285. doi: 10.1029/JB089iB10p08269 CrossRefGoogle Scholar
  67. Wright JV, Walker GP (1981) Eruption, transport and deposition of ignimbrite: a case study from Mexico. J Volcanol Geotherm Res 9:111–131. doi: 10.1016/0377-0273(81)90001-9 CrossRefGoogle Scholar
  68. Wright JV, Smith AL, Self S (1980) A working terminology of pyroclastic deposits. J Volcanol Geotherm Res 8:315–336. doi: 10.1016/0377-0273(80)90111-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Pete J. Rowley
    • 1
    • 2
    • 3
    Email author
  • Olivier Roche
    • 1
    • 2
    • 3
  • Timothy H. Druitt
    • 1
    • 2
    • 3
  • Ray Cas
    • 4
  1. 1.Clermont Université, Université Blaise Pascal, Laboratoire Magmas et VolcansClermont-FerrandFrance
  2. 2.CNRSClermont-FerrandFrance
  3. 3.IRDClermont-FerrandFrance
  4. 4.School of Geosciences, Monash UniversityClaytonAustralia

Personalised recommendations