Bulletin of Volcanology

, 76:849 | Cite as

The 3640–3510 BC rhyodacite eruption of Chachimbiro compound volcano, Ecuador: a violent directed blast produced by a satellite dome

  • Benjamin Bernard
  • Silvana Hidalgo
  • Claude Robin
  • Bernardo Beate
  • Jenny Quijozaca
Research Article


Based on geochronological, petrological, stratigraphical, and sedimentological data, this paper describes the deposits left by the most powerful Holocene eruption of Chachimbiro compound volcano, in the northern part of Ecuador. The eruption, dated between 3640 and 3510 years BC, extruded a ∼650-m-wide and ∼225-m-high rhyodacite dome, located 6.3 km east of the central vent, that exploded and produced a large pyroclastic density current (PDC) directed to the southeast followed by a sub-Plinian eruptive column drifted by the wind to the west. The PDC deposit comprises two main layers. The lower layer (L1) is massive, typically coarse-grained and fines-depleted, with abundant dense juvenile fragments from the outgassed dome crust. The upper layer (L2) consists of stratified coarse ash and lapilli laminae, with juvenile clasts showing a wide density range (0.7–2.6 g cm−3). The thickness of the whole deposit ranges from few decimeters on the hills to several meters in the valleys. Deposits extending across six valleys perpendicular to the flow direction allowed us to determine a minimum velocity of 120 m s−1. These characteristics show striking similarities with deposits of high-energy turbulent stratified currents and in particular directed blasts. The explosion destroyed most of the dome built during the eruption. Subsequently, the sub-Plinian phase left a decimeter-thick accidental-fragment-rich pumice layer in the Chachimbiro highlands. Juvenile clasts, rhyodacitic in composition (SiO2 = 68.3 wt%), represent the most differentiated magma of Chachimbiro volcano. Magma processes occurred at two different depths (∼14.4 and 8.0 km). The hot (∼936 °C) deep reservoir fed the central vent while the shallow reservoir (∼858 °C) had an independent evolution, probably controlled by El Angel regional fault system. Such destructive eruptions, related to peripheral domes, are of critical importance for hazard assessment in large silicic volcanic complexes such as those forming the Frontal Volcanic Arc of Ecuador and Colombia.


Chachimbiro Ryodacite Directed blast Satellite dome Physical volcanology Thermobarometry 



The sedimentological analysis (stratigraphy, grain-size distribution, and densitometry) of the PDC deposit has been funded with a Chancellor Grant of the Universidad San Francisco de Quito (P07AR71701USFQ2012-18). The 14C datings, geochemical, and petrographic analysis, as well as the fieldwork for this study have been funded by the Institut de Recherche pour le Développement in association with the Instituto Geofísico de la Escuela Politécnica Nacional. This research has been completed in the context of a Laboratoire Mixte International “Séismes et Volcans dans les Andes du Nord”. The authors thank Luc Ortlieb and the Laboratoire de Mesure du Carbone 14 for the 14C datings. The authors also thank Celine Liorzou from the Université de Bretagne Occidentale for the whole-rock chemical analysis and Jean-Luc Devidal from the Laboratoire Magmas et Volcans of Blaise Pascal University (Clermont II) for his kind help with the microprobe analysis. The authors acknowledge the participation of Marion Bécouze, Celia Guergouz, and Francisco Herrera to perform the fieldwork. Thorough reviews by J.-C. Komorowski, J.D.L. White, and an anonymous reviewer greatly helped us to improve this manuscript.

Supplementary material

445_2014_849_MOESM1_ESM.xls (152 kb)
ESM 1 (XLS 151 kb)
445_2014_849_MOESM2_ESM.xls (28 kb)
ESM 2 (XLS 28 kb)
445_2014_849_MOESM3_ESM.xls (20 kb)
ESM 3 (XLS 20 kb)


  1. Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe-Mg-Mn oxides: Fe-Ti oxides. Am Mineral 73:714–726Google Scholar
  2. Andersen DJ, Lindsley DH, Davidson PM (1998) QUILF: A program to assess equilibria among Fe-Mg-Ti oxides, pyroxenes, olivine, and quartz, New YorkGoogle Scholar
  3. Andrade D, Martin H, Monzier M (2014) Restricciones y un posible modelo para la génesis de los magmas del volcán Pululahua (Ecuador). Revista EPN 33(2):112–121Google Scholar
  4. Andrade D (2009) The influence of active tectonics on the structural development and flank collapse of ecuadorian arc volcanoes. PhD thesis, Université Blaise Pascal, Clermont-Ferrand-FranceGoogle Scholar
  5. Andrews BJ, Manga M (2011) Effects of topography on pyroclastic density current runout and formation of coignimbrites. Geology 36(12):1099–1102. doi: 10.1130/G32226.1 CrossRefGoogle Scholar
  6. Auker MR, Sparks RSJ, Siebert L, Crosweller HS, Ewert J (2013) A statistical analysis of the global historical volcanic fatalities record. J Appl Volcanol 2:2. doi: 10.1186/2191-5040-2-2 CrossRefGoogle Scholar
  7. Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test equilibrium between coexisting Fe-Ti oxides. Am Mineral 73:57–61Google Scholar
  8. Beate B (2001) Tefracronología Holocénica en el complejo Volcánico de Chachimbiro, prov. de Imbabura. Resumen en "Cuartas Jornadas en Ciencias de la Tierra", Escuela Politécnica Nacional, April 3–6, Quito (Ecuador), p 8Google Scholar
  9. Belousov A (1996) Pyroclastic deposits of March 30, 1956 directed blast at Bezymianny volcano. Bull Volcanol 57:649–662CrossRefGoogle Scholar
  10. Belousov A, Voight B, Belousova M, Petukhin A (2002) Powerful pyroclastic surge in the May 8–10, 1997 explosive eruption of Bezymianny volcano, Kamchatka, Russia. Bull Volcanol 64:455–471CrossRefGoogle Scholar
  11. Belousov A, Voight B, Belousova M (2007) Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits. Bull Volcanol 69:701–740CrossRefGoogle Scholar
  12. Bernard B, Robin C, Beate B, Hidalgo S (2011) Nuevo modelo evolutivo y actividad eruptiva reciente del volcán Chachimbiro. Extended abstract in the "7mas Jornadas en Ciencias de la Tierra", Escuela Politécnica Nacional, November 23–25, Quito (Ecuador), pp 119–122Google Scholar
  13. Biass S, Bonadonna C (2011) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: The example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73:73–90. doi: 10.1007/s00445-010-0404-5 CrossRefGoogle Scholar
  14. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: A new simple strategy. Geology 40(5):415–418. doi: 10.1130/G32769.1 CrossRefGoogle Scholar
  15. Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75:742. doi: 10.1007/s00445-013-0742-1 CrossRefGoogle Scholar
  16. Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra fall deposits. Bull Volcanol 67:441–456. doi: 10.1007/s00445-004-0386-2 CrossRefGoogle Scholar
  17. Boudon G, Le Friant A, Villemant B, Viodé J-P (2005) Martinique. In: Lindsay JM, Robertson REA, Shepherd JB, Ali S (Eds.), Volcanic Hazard Atlas of the Lesser Antilles. Seismic Research Uni, The University of the West Indies, Trinidad and Tobago, WI, pp 126–145Google Scholar
  18. Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc Lond, Mem 27:1–143CrossRefGoogle Scholar
  19. Bronk Ramsey C (2005) OxCal program v3.10 [software and online manual]. URL: Accessed 13 January 2014
  20. Burgisser A, Bergantz GW (2002) Reconciling pyroclastic flow and surge: the multiphase physics of pyroclastic density currents. Earth Planet Sci Lett 202:405–418CrossRefGoogle Scholar
  21. Calder ES, Cole PD, Dade WB, Druitt TH, Hoblitt RP, Huppert HE, Ritchie L, Sparks RSJ, Young SR (1999) Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat. Geophys Res Lett 26:537–540CrossRefGoogle Scholar
  22. Cas RAF, Wright JV (1987) Volcanic successions. Modern and ancient. Allen and Unwin, LondonCrossRefGoogle Scholar
  23. Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125CrossRefGoogle Scholar
  24. Charbonnier SJ, Germa A, Connor CB, Gertisser R, Preece K, Komorowski J-C, Lavigne F, Dixon T, Connor L (2013) Evaluation of the impact of the 2010 pyroclastic density currents at Merapi volcano from high-resolution satellite imagery, field investigations and numerical simulations. J Volcanol Geotherm Res 261:295–315. doi: 10.1016/j.jvolgeores.2012.12.021 CrossRefGoogle Scholar
  25. Cobeñas G, Thouret J-C, Bonadonna C, Boivin P (2012) The c.2030 yr BP Plinian eruption of El Misti volcano, Peru: eruption dynamics and hazard implications. J Volcanol Geotherm Res 241–242:105–120CrossRefGoogle Scholar
  26. Cotten J, Ledez A, Bau M, Caroff M, Maury RC, Dulski P, Fourcade S, Bohn M, Brousse R (1995) Origin of anomalous rare-earth element and yttrium enrichments in subaerially exposed basalts—evidence from French-Polynesia. Chem Geol 119:115–138CrossRefGoogle Scholar
  27. Crandell DR (1989) Gigantic debris avalanche of Pleistocene age from ancestral Mount Shasta volcano, California and debris-avalanche hazard zonation. USGS Bull, 1861Google Scholar
  28. Crosweller HS, Arora B, Brown SK, Cottrell E, Deligne NI, Guerrero NO, Hobbs L, Kiyosugi K, Loughlin SC, Lowndes J, Nayembil M, Siebert L, Sparks RSJ, Takarada S, Venzke E (2012) Global database on large magnitude explosive volcanic eruptions (LaMEVE). J Appl Volcanol 1:4. doi: 10.1186/2191-5040-1-4 CrossRefGoogle Scholar
  29. Dade WB (2003) The emplacement of low-aspect ratio ignimbrites by turbulent parent flows. J Geophys Res 108(B4):2211. doi: 10.1029/2001JB001010 CrossRefGoogle Scholar
  30. Druitt TH (1998) Pyroclastic density currents. In: Gilbert JS and Sparks RSJ (eds) The physics of explosive volcanic eruptions. Geol Soc London Spec Publ, 145:145–182Google Scholar
  31. Eychenne J, Le Pennec J-L, Ramón P, Yepes H (2013) Dynamics of explosive paroxysms at open-vent andesitic systems: high-resolution mass distribution analyses of the 2006 Tungurahua fall deposit (Ecuador). Earth Planet Sci Lett 361:343–355. doi: 10.1016/j.epsl.2012.11.002 CrossRefGoogle Scholar
  32. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167CrossRefGoogle Scholar
  33. Fisher RV (1990) Transport and deposition of a pyroclastic surge across an area of high relief: the 18 May 1980 eruption of Mount St. Helens, Washington. Geol Soc Am Bull 102:1038–1054CrossRefGoogle Scholar
  34. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, BerlinCrossRefGoogle Scholar
  35. Francis PW, Baker MCW (1977) Mobility of pyroclastic flows. Nature 270:164–165CrossRefGoogle Scholar
  36. Freundt A, Wilson CJN, Carey SN (2000) Ignimbrites and block-and-ash deposits. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, London, pp 581–599Google Scholar
  37. Gardner JE, Tait S (2000) The caldera-forming eruption of Volcán Ceboruco, Mexico. Bull Volcanol 62(1):20–33. doi: 10.1007/s004450050288 CrossRefGoogle Scholar
  38. Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308:957–1039CrossRefGoogle Scholar
  39. Glicken H (1996) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens volcano, Washington. Cascades Volcano Observatory, Vancouver, Open-file Report, 96–677Google Scholar
  40. Hall ML, Mothes PA (1997) El Origen y Edad de la Cangahua Superior, Valle de Tumbaco, Ecuador. In: Zebrowski C, Quantin P, Trujillo G, Memoirs—Suelos Volcánicos Endurecidos. III Simposio Internacional (ORSTOM--Quito. Dic. 1996), pp. 19–28Google Scholar
  41. Hall ML, Mothes PA (2008) Quilotoa volcano—Ecuador: an overview of young dacitic volcanism in a lake-filled caldera. J Volcanol Geotherm Res 176:44–55. doi: 10.1016/j.jvolgeores.2008.01.025 CrossRefGoogle Scholar
  42. Hayashi JN, Self S (1992) A comparison of pyroclastic flow and debris avalanche mobility. J Geophys Res 97:9063–9071CrossRefGoogle Scholar
  43. Heim A (1932) Bergsturz und Menschenleben. Fretz und Wasmuth, ZürichGoogle Scholar
  44. Hoblitt RP, Miller CD, Vallance JW (1981) Origin and stratigraphy of the deposit produced by the May 18 directed blast. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. USGS Prof Paper, 1250:401–419Google Scholar
  45. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic rocks. Bull Volcanol 51:451–462CrossRefGoogle Scholar
  46. Hidalgo S, Monzier M, Martin H, Chazot G, Eissen J-P, Cotten J (2007) Adakitic magmas in the Ecuadorian Volcanic Front: petrogenesis of the Iliniza volcanic complex (Ecuador). J Volcanol Geotherm Res 159:366–392CrossRefGoogle Scholar
  47. Hidalgo S, Monzier M, Almeida E, Chazot G, Eissen J-P, van der Plicht J, Hall ML (2008) Late Pleistocene and Holocene activity of the Atacazo–Ninahuilca volcanic complex (Ecuador). J Volcanol Geotherm Res 176:16–26. doi: 10.1016/j.jvolgeores.2008.05.017 CrossRefGoogle Scholar
  48. Inman DL (1952) Measures for describing the size distribution of sediments. J Sed Petrol 22:125–145Google Scholar
  49. Johnson MC, Rutherford MJ (1989) Experimental calibration of the aluminium-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17:837–841CrossRefGoogle Scholar
  50. Komorowski J-C, Jenkins S, Baxter PJ, Picquout A, Lavigne F, Charbonnier S, Gertisser R, Preece K, Cholik N, Budi-Santoso A, Surono (2013) Paroxysmal dome explosion during the Merapi 2010 eruption: processes and facies relationships of associated high-energy pyroclastic density currents. J Volcanol Geotherm Res 261:260–294. doi: 10.1016/j.jvolgeores.2013.01.007 CrossRefGoogle Scholar
  51. Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Guo YZ (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Mineral Mag 61:295–321CrossRefGoogle Scholar
  52. Legros F (2000) Minimum volume of a tephra fallout deposit estimated from a single isopach. J Volcanol Geotherm Res 96:25–32CrossRefGoogle Scholar
  53. Le Pennec J-L, Ruiz AG, Eissen J-P, Hall ML, Fornari M (2011) Identifying potentially active volcanoes in the Andes: radiometric evidence for late Pleistocene-early Holocene eruptions at Volcán Imbabura, Ecuador. J Volcanol Geotherm Res 206:121–135CrossRefGoogle Scholar
  54. Macías JL, Arce JL, García-Palomo A, Mora JC, Layer PW, Espíndola JM (2010) Late-Pleistocene flank collapse triggered by dome growth at Tacaná volcano, México-Guatemala, and its relationship to the regional stress regime. Bull Volcanol 72:33–53. doi: 10.1007/s00445-009-0303-9 CrossRefGoogle Scholar
  55. Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186(1–2):10–21CrossRefGoogle Scholar
  56. McGimsey RG, Neal CA, Riley CM (2001) Areal distribution, thickness, mass, volume, and grain-size of tephra-fall deposits from the 1992 eruptions of Crater Peak vent, Mt. Spurr volcano, Alaska. USGS Report 01–370Google Scholar
  57. Monzier M, Robin C, Hall ML, Cotten J, Mothes P, Eissen J-P, Samaniego P (1997) Les adakites d’Équateur : modèle préliminaire. Comptes Rendus Acad Sci, Paris, 324 (IIa): pp 545–552Google Scholar
  58. Mook WG, Streurman HJ (1983) Physical and chemical aspects of radiocarbon dating. PACT Publications 8:31–55Google Scholar
  59. Moreira Pino M (2012) Prospección arqueológica en el sector de la implementación del proyecto Yachay (660 hectáreas)—cuidad del conocimiento Ecuador, provincia de Imbabura, cantón Urcuquí. INPC ReportGoogle Scholar
  60. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238CrossRefGoogle Scholar
  61. Oxford-Economics (2010) The economic impacts of air travel restrictions due to volcanic ash report for airbus. Oxford Economics Report, Oxford, UK, p. 12Google Scholar
  62. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  63. Pitari G, Mancini E (2002) Short-term climatic impact of the 1991 volcanic eruption of Mt. Pinatubo and effects on atmospheric tracers. Nat Hazards Earth Syst Sci 2:91–108CrossRefGoogle Scholar
  64. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral and Geochem 69:61–120CrossRefGoogle Scholar
  65. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15CrossRefGoogle Scholar
  66. Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, London, pp 263–269Google Scholar
  67. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Bronk Ramsey C, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04, terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–1058Google Scholar
  68. Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160(1):45–66. doi: 10.1007/s00410-009-0465-7 CrossRefGoogle Scholar
  69. Robin C, Samaniego P, Le Pennec J-L, Mothes P, van der Plicht J (2008) Late Holocene phases of dome growth and Plinian activity at Guagua Pichincha volcano (Ecuador). J Volcanol Geotherm Res 176:7–15. doi: 10.1016/j.jvolgeores.2007.10.008 CrossRefGoogle Scholar
  70. Robin C, Eissen J-P, Samaniego P, Martin H, Hall ML, Cotten J (2009) Evolution of the late Pleistocene Mojanda-Fuya Fuya volcanic complex (Ecuador), by progressive adakitic involvement in mantle magma sources. Bull Volcanol 71:233–258. doi: 10.1007/s00445-008-0219-9 CrossRefGoogle Scholar
  71. Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions J Geophys Res 98(B11):19667–19685CrossRefGoogle Scholar
  72. Saucedo R, Macías JL, Sheridan MF, Bursik MI, Komorowski J-C (2005) Modeling of pyroclastic flows of Colima Volcano, Mexico: implications for hazard assessment. J Volcanol Geotherm Res 139:103–115. doi: 10.1016/j.jvolgeores.2004.06.019 CrossRefGoogle Scholar
  73. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of ocean basalts: Implication for mantle composition and processes. In: Saunders AD and Norry MJ, Eds., Magmatism in Ocean Basins. Geol Soc London Spec Publ, 42:313–345Google Scholar
  74. Valentine GA (1987) Stratified flow in pyroclastic surges. Bull Volcanol 49:616–630CrossRefGoogle Scholar
  75. Valentine GA, Fisher RV (2000) Pyroclastic surges and blasts. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, London, pp 571–580Google Scholar
  76. Vallejo C, Spikings RA, Winkler W, Luzieux L, Chew D, Page L (2006) The early interaction between the Caribbean Plateau and the NW South American plate. Terra Nova 18:264–269CrossRefGoogle Scholar
  77. Voight B, Komorowski J-C, Norton GE, Belousov AB, Belousova M, Boudon G, Francis PW, Franz W, Heinrich P, Sparks RSJ, Young SR (2002) The 1997 Boxing Day Sector Collapse and Debris Avalanche, Soufriere Hills Volcano, Montserrat, W.I. In: TH Druitt, BP Kokelaar (Eds), The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc London, Memoirs, 21, 363–407Google Scholar
  78. Von Hillebrandt C (1989) Estudio geovolcanológico del Complejo Volcánico Cuicocha-Cotacachi y sus aplicaciones. Provincia de Imbabura, Tesis de Ingeniería, Escuela Politécnica Nacional, Quito-EcuadorGoogle Scholar
  79. Walker G (1971) Grain-size characteristics of pyroclastic deposits. J Geol 79:696–714CrossRefGoogle Scholar
  80. White JDL, Houghton BF (2006) Primary volcanoclastic rocks. Geology 34(8):677–680. doi: 10.1130/G22346.1 CrossRefGoogle Scholar
  81. Wilson CJN, Houghton BF (2000) Pyroclastic transport and deposition. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, London, pp 545–554Google Scholar
  82. Zeidler JA (2008) The Ecuadorian formative. In: Silverman H, Isbell WH (eds) The handbook of South American archaeology. Springer, New York, pp 459–488CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Benjamin Bernard
    • 1
    • 2
    • 3
  • Silvana Hidalgo
    • 2
  • Claude Robin
    • 3
  • Bernardo Beate
    • 4
  • Jenny Quijozaca
    • 1
  1. 1.Universidad San Francisco de QuitoQuitoEcuador
  2. 2.Instituto Geofísico, Escuela Politécnica NacionalQuitoEcuador
  3. 3.Laboratoire Magmas et Volcans, Clermont UniversitéUniversité Blaise Pascal, CNRS-UMR 6524, IRD-R 163Clermont-FerrandFrance
  4. 4.Departamento de GeologíaEscuela Politécnica NacionalQuitoEcuador

Personalised recommendations