Bulletin of Volcanology

, 76:848 | Cite as

Characterization of volcanic regimes and identification of significant transitions using geophysical data: a review

  • Roberto Carniel
Review Article


A volcano can be considered as a dynamical system, and each time series recorded at a volcano can be interpreted as one of its observables. It is therefore theoretically possible to extract, even from a single time series, information about the underlying governing system. This is done through a procedure called “embedding” that is based on the intuitive statement that the only time series available carries with it information also about the time evolution of other parameters that we are not able to sample or observe. Carrying out this embedding procedure requires estimates of key parameters such as the optimal delay time and a proper embedding dimension. Other independent but often conceptually similar procedures allow decompositions of the time series into components that may in turn be associated to different source processes. The key to the characterization of volcanic regimes is a process of data reduction, aimed at parsing the amount of data into its most useful components which can then facilitate the interpretation of the system. The approaches presented here can be used to conduct such a data reduction phase, and the reduced data stream can be used not only for characterizing different volcanic regimes but also for determining transitions between them, examining their relationship with external or internal events such as tectonic or volcano-tectonic seismic events, looking for precursors of paroxysmal eruptive phases etc. These results can become additional inputs for physical models in order to understand in detail the physical changes that occurred in the volcanic system and their possible consequences. In this paper, the existing literature on this subject will be reviewed and the prospects of future research will be discussed.


Time series data reduction Dynamical analysis Embedding Precursors Volcanic regimes Pattern recognition 



The author wishes to acknowledge the invaluable help resulted from discussions with his coauthors and former students of the last couple of decades. The methods described here were studied and/or developed also during several research periods spent by the author in foreign institutions, including the following:

-Instituto de Geofísica, Universidad Nacional Autónoma de México (UNAM), México D.F., México

-Earthquake Research Institute, The University of Tokyo, Tokyo, Japan

-ITMO University, St. Petersburg, Russia

-Centro de Investigaciones en Ciencias de la Tierra (CICTERRA)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina

Figures are based on original drawings by my former students Fausto Barazza and Luca Barbui.

The paper was improved substantially by the thoughtful comments of the reviewers, Art Jolly and Servando De la Cruz Reyna, and of the editor Steve Self; their help is warmly acknowledged.


  1. Acernese F, Ciaramella A, De Martino S, Falanga M, Tagliaferri R (2000) Neural networks for blind sources separation of Stromboli explosion quakes, in ICA2000, international workshop on independent component analysis and blind signal separation, 19–22 June 2000, Helsinki, FinlandGoogle Scholar
  2. Acernese F, Ciaramella A, De Martino S, Falanga M e, Tagliaferri R (2003) Neural networks for blind sources separation of Stomboli explosion quakes. IEEE Trans Neural Netw 14:1Google Scholar
  3. Acernese F, Ciaramella A, De Martino S, Falanga M, Godano C, Tagliaferri R (2004) Polarisation analysis of the independent components of low frequency events at Stromboli volcano (Aeolian Islands, Italy). J Volcanol Geotherm Res 137:153–168Google Scholar
  4. Aldrich C, Barkhuizen M (2003) Process system identification strategies based on the use of singular spectrum analysis. Mineral Eng 16:815–826Google Scholar
  5. Alligood KT, Sauer TD, Yorke JA (2000) Chaos: an introduction to dynamical systems, Springer, 3. ed., 603 ppGoogle Scholar
  6. Arámbula-Mendoza R, Lesage P, Valdés-González C, Varley NR, Reyes-Dávila G, Navarro C (2011) Seismic activity that accompanied the effusive and explosive eruptions during the 2004–2005 period at Volcán de Colima, Mexico. J Volcanol Geotherm Res 205(1–2):30–46Google Scholar
  7. Araujo AFR and Rego RLME (2013) Self-organizing maps with a time-varying structure. ACM Comput Surv 46, 1, Art. 7, 38 pp. DOI: 10.1145/2522968.2522975
  8. Aspinall WP, Woo G, Voight B, Baxter PJ (2003) Evidence based volcanology: application to eruption crises. J Volcanol Geotherm Res 128(1–3):273–285Google Scholar
  9. Aspinall W, Carniel R, Jaquet O, Woo G, Hincks T (2006) Using hidden multi-state Markov models with multi-parameter volcanic data to provide empirical evidence for alert level decision-support. J Volcanol Geotherm Res 153(1–2):112–124. doi: 10.1016/j.jvolgeores.2005.08.010 Google Scholar
  10. Bebbington MS (2007) Identifying volcanic regimes using hidden Markov models. Geophys J Int 171(2):921–942. doi: 10.1111/j.1365-246X.2007.03559.x Google Scholar
  11. Bebbington MS (2013) Assessing probabilistic forecasts of volcanic eruption onsets. Bull Volcanol 75(12):1–13Google Scholar
  12. Bell AF, Naylor M, Heap MJ, Main IG (2011) Forecasting volcanic eruptions and other material failure phenomena: an evaluation of the failure forecast method. Geophys Res Lett 38, L15304. doi: 10.1029/2011GL048155 Google Scholar
  13. Bell AF, Naylor M, Main IG (2013) The limits of predictability of volcanic eruptions from accelerating rates of earthquakes. Geophys J Int 194(3):1541–1553Google Scholar
  14. Beyreuther M, Wassermann J (2011) Hidden semi-Markov model based earthquake classification system using weighted finite-state transducers. Nonlinear Process Geophys 18(1):81–89Google Scholar
  15. Beyreuther M, Carniel R, Wassermann J (2008) Continuous hidden Markov models: application to automatic earthquake detection and classification at Las Canãdas caldera, Tenerife. J Volcanol Geotherm Res 176(4):513–518. doi: 10.1016/j.jvolgeores.2008.04.021 Google Scholar
  16. Beyreuther M, Hammer C, Wassermann J, Ohrnberger M, Megies T (2012) Constructing a hidden Markov model based earthquake detector: application to induced seismicity. Geophys J Int 189(1):602–610Google Scholar
  17. Bicego M, Acosta-Munoz C, Orozco-Alzate M (2013) Classification of seismic volcanic signals using hidden-Markov-model-based generative embeddings. IEEE Trans Geosci Remote Sens 51(6):3400–3409Google Scholar
  18. Bishop C (1995) Neural networks for pattern recognition, Oxford University Press. 500 ppGoogle Scholar
  19. Bonaccorso A, Bonforte A, Calvari S, Del Negro C, Di Grazia G, Ganci G, Neri M, Vicari A, Boschi E (2011) The initial phases of the 2008–2009 Mount Etna eruption: a multidisciplinary approach for hazard assessment. J Geophys Res B Solid Earth 116(3), B03203Google Scholar
  20. Bonadonna C, Folch A, Loughlin S, Puempel H (2012) Future developments in modelling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on Ash Dispersal Forecast and Civil Aviation. Bull Volcanol 74(1):1–10Google Scholar
  21. Bottiglieri M, De Martino S, Falanga M, Godano C, Palo M (2005) Statistics of inter-time of Strombolian explosion-quakes. Europhys Lett 72(3):492–498. doi: 10.1209/epl/i2005-10258-0 Google Scholar
  22. Box G, Jenkins GM, Reinsel G (1994) Time series: forecasting and control, 3rd edn. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  23. Bozzo E, Carniel R, Fasino D (2010) Relationship between Singular Spectrum Analysis and Fourier analysis: theory and application to the monitoring of volcanic activity. Comput Math Appl 60(3):812–820, 08Google Scholar
  24. Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Phys D 20:217–236Google Scholar
  25. Cabras G, Carniel R, Wassermann J (2008) Blind source separation: an application to the Mt. Merapi volcano, Indonesia. Fluct Noise Lett 8:3–4, L1-L12Google Scholar
  26. Cabras G, Carniel R, Wasserman J (2010) Signal enhancement with generalized ICA applied to Mt. Etna Volcano, Italy. Boll Geofis Teor Appl 51(1):57–73Google Scholar
  27. Cabras G, Carniel R, Jones J (2012) Non-negative matrix factorization: an application to Erta’Ale volcano, Ethiopia. Boll Geofis Teor Appl 53(2):231–242. doi: 10.4430/bgta0056 Google Scholar
  28. Cabras G, Carniel R, Jones J, Takeo M (2014) Reducing wind noise in seismic data using non-negative matrix factorization: an application to Villarrica volcano, Chile. Geofísica Int 53–1:77–85Google Scholar
  29. Cannata A, Giudice G, Gurrieri S, Montalto P, Alparone S, Di Grazia G, Favara R, Gresta S, Liuzzo M (2010) Relationship between soil CO2 flux and volcanic tremor at Mt. Etna: implications for magma dynamics. Environ Earth Sci 61(3):477–489Google Scholar
  30. Carbone D, Zuccarello L, Montalto P, Rymer H (2012) New geophysical insight into the dynamics of Stromboli volcano (Italy). Gondwana Res 22(1):290–299Google Scholar
  31. Cárdenas-Peña D, Orozco-Alzate M, Castellanos-Dominguez G (2013) Selection of time-variant features for earthquake classification at the Nevado-del-Ruiz volcano. Comput Geosci 51:293–304Google Scholar
  32. Carniel R (2005) Development of a new diagnostic protocol using a neuro-dynamical tool, Chaos. Solitons Fractals 24(1):349–352Google Scholar
  33. Carniel R, Di Cecca M (1999) Dynamical tools for the analysis of long term evolution of volcanic tremor at Stromboli. Ann Geofis 42(3):483–495Google Scholar
  34. Carniel R, Iacop F (1996) Spectral precursors of paroxysmal phases of Stromboli. Ann Geofis XXXIX(2):327–345Google Scholar
  35. Carniel R, Tárraga M (2006) Can tectonic events change volcanic tremor at Stromboli? Geophys Res Lett 33(20):L20321Google Scholar
  36. Carniel R, Casolo S, Iacop F (1996) “Spectral analysis of volcanic tremor associated with the 1993 paroxysmal events at Stromboli”. In: McGuire WJ, Jones AP and Neuberg J (eds), Volcano instability on the Earth and other planets, Geological Society Special Publication n. 110, 373–381Google Scholar
  37. Carniel R, Di Cecca M, Rouland D (2003) Ambrym, Vanuatu (July–August 2000): spectral and dynamical transitions on the hours-to-days timescale. J Volcanol Geotherm Res 128(1–3):1–13Google Scholar
  38. Carniel R, Ortiz R, Di Cecca M (2006a) Spectral and dynamical hints on the timescale of preparation of the 5 April 2003 explosion at Stromboli volcano. Can J Earth Sci 43:41–55Google Scholar
  39. Carniel R, Barazza F and Pascolo PB (2006b) Improvement of Nakamura technique by singular spectrum analysis, soil dynamics and earthquake engineering, Elsevier, 26, 1, 55–63Google Scholar
  40. Carniel R, Barazza F, Tárraga M, Ortiz R (2006c) On the singular values decoupling in the singular spectrum analysis of volcanic tremor at Stromboli. Nat Hazards Earth Syst Sci 6:903–909Google Scholar
  41. Carniel R, Tárraga M, Barazza F, García A (2008a) Possible interaction between tectonic events and seismic noise at Las Cañadas Volcanic Caldera, Tenerife, Spain. Bull Volcanol 70(9):1113–1121. doi: 10.1007/s00445-007-0193-7 Google Scholar
  42. Carniel R, Jaquet O, Tárraga M (2008b) Perspectives on the application of the geostatistical approach to volcano forecasting at different time scales. Chapter 14, In: Gottsmann J and Marti J (eds.): Caldera volcanism: analysis, modelling and response, Developments in Volcanology, Elsevier, Vol. 10, Pages 471–487, doi: 10.1016/S1871-644X(07)00014-9
  43. Carniel R, Barbui L, Jolly AD (2013a) Detecting dynamical regimes by Self-Organizing Map (SOM) analysis: an example from the March 2006 phreatic eruption at Raoul Island, New Zealand Kermadic Arc. Boll Geofis Teor Appl 54(1):39–52Google Scholar
  44. Carniel R, Jolly AD, Barbui L (2013b) Analysis of phreatic events at Ruapehu volcano, New Zealand using a new SOM approach. J Volcanol Geotherm Res 254:69–79Google Scholar
  45. Ceamanos X, Waske B, Benediktsson JA, Chanussot J, Fauvel M, Sveinsson JR (2010) A classifier ensemble based on fusion of support vector machines for classifying hyperspectral data. Int J Image Data Fusion 1(4):293–307Google Scholar
  46. Chouet B (2003) Volcano seismology. Pure Appl Geophys 160(3–4):739–788Google Scholar
  47. Chouet BA, Matoza RS (2013) A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. J Volcanol Geotherm Res 252:108–175Google Scholar
  48. Chouet BA, Shaw HR (1991) Fractal properties of tremor and gas-piston events observed at Kilauea Volcano, Hawaii. J Geophys Res 96:10177–10189Google Scholar
  49. Cichocki A, Amari S (2003) Adaptive blind signal and image processing. John Wiley, Chichester, UKGoogle Scholar
  50. Cichocki A, Georgiev P (2003) Blind source separation algorithms with matrix constraints, IEICE Trans. Fundam Electron Commun Comput Sci E86-A:513–522Google Scholar
  51. Cichocki A, Zdunek R, Phan T, Amari S (2009) Nonnegative matrix and tensor factorizations: applications to exploratory multy-way data analysis and blind source separation. Wiley, Tokyo, 500 ppGoogle Scholar
  52. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6(3–73):1990Google Scholar
  53. Collier L, Neuberg J (2006) Incorporating seismic observations into 2D conduit flow modelling. J Volcanol Geotherm Res 152(3–4):331–346Google Scholar
  54. Collinson ASD, Neuberg JW (2012) Gas storage, transport and pressure changes in an evolving permeable volcanic edifice. J Volcanol Geotherm Res 243–244:1–13Google Scholar
  55. Cornelius RR, Scott PA (1993) A materials failure relation of accelerating creep as empirical description of damage accumulation. Rock Mech Rock Eng 26:233–252Google Scholar
  56. Currenti G, Del Negro C, Lapenna V, Telesca L (2005) Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded at Mt. Etna volcano, Sicily (Italy). Chaos Solitons Fractals 23:1921–1929Google Scholar
  57. Cusano P, Petrosino S, Saccorotti G (2008) Hydrothermal origin for sustained long-period (LP) activity at Campi Flegrei volcanic complex, Italy. J Volcanol Geotherm Res 177(4):1035–1044Google Scholar
  58. Daubechies I (1990) Wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5):961–1005Google Scholar
  59. Daubechies I (1992) Ten lectures on wavelets, vol. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM—Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992. ISBN:0-89871-274-2Google Scholar
  60. D’Auria L, Giudicepietro F, Martini M, Orazi M, Peluso R, Scarpato G (2010) Polarization analysis in the discrete wavelet domain: an application to volcano seismology. Bull Seismol Soc Am 100(2):670–683Google Scholar
  61. De la Cruz Reyna S, Tilling R (2008) Scientific and public responses to the ongoing volcanic crisis at Popocatépetl volcano, México: importance of an effective hazards warning system. J Volcanol Geotherm Res 170:121–134. doi: 10.1016/j.jvolgeores.2007.09.002 Google Scholar
  62. De la Cruz Reyna S, Tárraga M, Ortiz R, Martínez Bringas A (2010) Tectonic earthquakes triggering volcanic seismicity and eruptions: case studies at Tungurahua and Popocatépetl volcanoes. J Volcanol Geotherm Res 193:37–48Google Scholar
  63. De la Cruz-Reyna S, Reyes-Davila G (2001) A model to describe precursory material-failure phenomena: application to short-term forecasting at Colima volcano. Mexico Bull Volcanol 63:297–308Google Scholar
  64. De Lauro E, De Martino S, Falanga M, Palo M, Scarpa R (2005) Evidence of VLP volcanic tremor in the band [0.2–0.5] Hz at Stromboli volcano, Italy. Geophys Res Lett 32 (17), art. no. L17303, 1–4Google Scholar
  65. De Lauro E, De Martino S, Falanga M, Palo M (2006) Statistical analysis of Stromboli VLP tremor in the band [0.1–0.5] Hz: some consequences for vibrating structures. Nonlinear Processes Geophys 13:393–400Google Scholar
  66. De Lauro E, De Martino S, Falanga M, and Palo M (2009a) Modelling the macroscopic behavior of Strombolian explosions at Erebus volcano, Physics of the Earth and Planetary Interiors,176,3–4,174–186Google Scholar
  67. De Lauro E, De Martino S, Falanga M, Palo M (2009b) Decomposition of high-frequency seismic wavefield of the Strombolian-like explosions at Erebus volcano by independent component analysis. Geophys J Int 177(3):1399–1406Google Scholar
  68. De Lauro E, De Martino S, Falanga M, Palo M (2011) Self-sustained vibrations in volcanic areas extracted by Independent Component Analysis: a review and new results. Nonlinear Process Geophys 18(6):925–940Google Scholar
  69. De Lauro E, De Martino S, Palo M, Ibañez JM (2012) Self-sustained oscillations at Volcán de Colima (México) inferred by independent component analysis. Bull Volcanol 74(1):279–292Google Scholar
  70. De Martino S, Falanga M, Scarpa R, Godano C (2005) Very long period volcanic tremor at Stromboli, Italy. Bull Seismol Soc Am 95:1186–1192Google Scholar
  71. De Martino S, Falanga M, Palo M, Montalto M, Patanè D (2011) Statistical analysis of the seismicity during the Strombolian crisis of 2007, Italy: evidence of a precursor in tidal range. J Geophys Res 116, B09312. doi: 10.1029/2010JB007503 Google Scholar
  72. Del Negro C, Greco F, Napoli R, Nunnari G (2008) Denoising gravity and geomagnetic signals from Etna volcano (Italy) using multivariate methods. Nonlinear Process Geophys 15(5):735–749Google Scholar
  73. Del Pin E, Carniel R, Tárraga M (2008) Event recognition by detrended fluctuation analysis: an application to Teide-Pico Viejo volcanic complex, Tenerife, Spain. Chaos Solitons Fractals 36(5):1173–1180. doi: 10.1016/j.chaos.2006.07.044 Google Scholar
  74. Eckmann JP, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57:617–656Google Scholar
  75. Elliot DF, Rao KR (1982) Fast transforms: algorithms, analysis, applications. Academic, New YorkGoogle Scholar
  76. Endo TE, Murray T (1991) Real-time seismic amplitude measurement (RSAM). A volcano monitoring and prediction tool. Bull Volcanol 53:533–545Google Scholar
  77. Esposito AM, Giudicepietro F, D’Auria L, Scarpetta S, Martini M, Coltelli M, Marinaro M (2008) Unsupervised neural analysis of very long period events at Stromboli volcano using the self-organizing maps. Bull Seismol Soc Am 98:2449–2459. doi: 10.1785/0120070110 Google Scholar
  78. Esposito A, D’Auria L, Giudicepietro F, Peluso R, Martini M (2013) Automatic recognition of landslides based on neural network analysis of seismic signals: an application to the monitoring of Stromboli volcano (Southern Italy). Pure Appl Geophys 170:1821–1832Google Scholar
  79. Esposito A, D’Auria L, Angelillo A, Giudicepietro F, Martini M (2014) Predictive analysis of the seismicity level at Campi Flegrei volcano using a data-driven approach. In “Recent advances of neural network models and applications”, Proceedings of the 23rd Workshop of the Italian Neural Networks Society (SIREN), May 23–25, Vietri sul Mare, Salerno, Italy. Series “Smart Innovation, Systems and Technologies” Vol. 26, Springer, pp 133–145Google Scholar
  80. Falsaperla S, Graziani S, Nunnari G, Spampinato S (1996) Automatic classification of volcanic earthquakes by using multi-layered neural networks. Nat Hazards 13(3):205–228Google Scholar
  81. Falsaperla S, Alparone S, Spampinato S (2003) Seismic features of the June 1999 tectonic swarms in the Stromboli volcano region, Italy. J Volcanol Geotherm Res 125(1–2):121–136Google Scholar
  82. Fattori Speranza F, Carniel R (2008) Structural changes of volcanic tremor at Stromboli volcano. J Volcanol Geotherm Res 171(1–2):103–117Google Scholar
  83. Flandrin P, Rilling G, Gonçalvés P (2004) Empirical mode decomposition as a filter bank. IEEE Signal Process Lett 11:112–114Google Scholar
  84. Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140Google Scholar
  85. Fukuzono T, Terashima H (1985) Experimental study of slope failure in cohesive soils caused by rainfall. In: Int Symp on Erosion, Debris Flow and Disaster Prevention. Tsukaba, JapanGoogle Scholar
  86. García A, Fernández-Ros A, Berrocoso M, Marrero JM, Prates G, De la Cruz-Reyna S, Ortiz R (2014) Magma displacements under insular volcanic fields, applications to eruption forecasting: El Hierro, Canary Islands, 2011–2013. Geophys J Int 197(1):322–334. doi: 10.1093/gji/ggt505 Google Scholar
  87. Garcia-Aristizabal A, Selva J, Fujita E (2013) Integration of stochastic models for long-term eruption forecasting into a Bayesian event tree scheme: a basis method to estimate the probability of volcanic unrest. Bull Volcanol 75(2):1–13Google Scholar
  88. Geirsson H, Rodgers M, LaFemina P, Witter M, Roman D, Muñoz A, Tenorio V, Alvarez J, Jacobo VC, Nilsson D, Galle B, Feineman MD, Furman T, Morales A (2014) Multidisciplinary observations of the 2011 explosive eruption of Telica volcano, Nicaragua: implications for the dynamics of low-explosivity ash eruptions. J Volcanol Geotherm Res 271:55–69Google Scholar
  89. Giacco F, Esposito AM, Scarpetta S, Giudicepietro F, Marinaro M (2009) Support vector machines and MLP for automatic classification of seismic signals at Stromboli volcano. In: Apolloni B, Bassis S, Morabito FC (Eds.), WIRN. Frontiers in Artificial Intelligence and Applications, vol. 204. IOS Press, pp. 116–123Google Scholar
  90. Godano C, Capuano P (1999) Source characterisation of low frequency events at Stromboli and Vulcano islands (Isole Eolie Italy). J Seismol 3:393–408Google Scholar
  91. Gottsmann JH, Carniel R, Coppo N, Wooller L, Hautmann S, Rymer H (2007) Oscillations in hydrothermal systems as a source of periodic unrest at caldera volcanoes: multiparameter insights from Nisyros, Greece. Geophys Res Lett 34(L07307):1–5Google Scholar
  92. Green RM, Bebbington MS, Cronin SJ, Jones G (2013) Geochemical precursors for eruption repose length. Geophys J Int 193(2):855–873Google Scholar
  93. Gunn LS, Blake S, Jones MC, Rymer H (2014) Forecasting the duration of volcanic eruptions: an empirical probabilistic model. Bull Volcanol 76(1):1–18, in pressGoogle Scholar
  94. Hammer C, Ohrnberger M (2012) Forecasting seismo-volcanic activity by using the dynamical behavior of volcanic earthquake rates. J Volcanol Geotherm Res 229–230:34–43Google Scholar
  95. Hammer C, Beyreuther M, Ohrnberger M (2012) Seismic-event spotting system for volcano fast-response systems. Bull Seismol Soc Am 102(3):948–960. doi: 10.1785/0120110167 Google Scholar
  96. Hammer C, Ohrnberger M, Fah D (2013) Classifying seismic waveforms from scratch: a case study in the alpine environment. Geophys J Int 192:425–439Google Scholar
  97. Hansen BE (1992) Testing for parameter instability in linear models. J Policy Model 14(4):517–533Google Scholar
  98. Harris AJL, Carniel R, Jones J (2005) Identification of variable convective regimes at Erta Ale Lava lake. J Volcanol Geotherm Res 142(3–4):207–223Google Scholar
  99. Hastie T, Tibshirani R, Friedman J (2002) The elements of statistical learning. Springer, Berlin, 533 ppGoogle Scholar
  100. Hayakawa M, Liu J-Y, Hattori K, and L Telesca (2009) Preface in “Electromagnetic phenomena associated with earthquakes and volcanoes” (Eds. Hayakawa M, Liu JY, Hattori K and Telesca L), Phys Chem Earth 34, 341–342Google Scholar
  101. Hellweg M (2000) Physical models for the source of Lascar’s harmonic tremor. J Volcanol Geotherm Res 101:183–198Google Scholar
  102. Huang NE, Shen ZS, Long RM, Wu C, Shih H-H, Zheng Q, Yen N-C, Tung C-C, Liu H-H (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc R Soc London Ser A 454:903–995Google Scholar
  103. Hyvärinen A, Karhunen J and Oja E (2001) Independent component analysis, John WileyGoogle Scholar
  104. Ichihara M, Takeo M, Yokoo A, Oikawa J, Ohminato T (2012) Monitoring volcanic activity using correlation patterns between infrasound and ground motion. Geophys Res Lett 39, L04304Google Scholar
  105. Jaquet O, Carniel R (2001) Stochastic modelling at Stromboli: a volcano with remarkable memory. J Volcanol Geotherm Res 105:249–262Google Scholar
  106. Jaquet O, Carniel R (2003) Multivariate stochastic modelling: towards forecasts of paroxysmal phases at Stromboli. J Volcanol Geotherm Res 128:261–271Google Scholar
  107. Jaquet O, Sparks RSJ and Carniel R (2006) Magma memory recorded by statistics of volcanic explosions at the Soufrière Hills volcano, Montserrat, in Mader HM, Coles SG, Connor CB and Connor LJ (eds), “Statistics in Volcanology”, IAVCEI Publications n. 1, Geological Society, ISBN 978-1-86239-208-3, 296 ppGoogle Scholar
  108. Jones JP, Carniel R, Malone SD (2012a) Sub-band decomposition and reconstruction of continuous volcanic tremor. J Volcanol Geotherm Res 213–214:98–115Google Scholar
  109. Jones JP, Carniel R, Malone SD (2012b) Decomposition, location, and persistence of seismic signals recovered from continuous tremor at Erta 'Ale, Ethiopia. J Volcanol Geotherm Res 213–214:116–129Google Scholar
  110. Julian BR (1994) Volcanic tremor: nonlinear excitation by fluid flow. J Geophys Res 99:11859–11877Google Scholar
  111. Julian B (2000) Period doubling and other non-linear phenomena in volcanic earthquakes and tremor. J Volcanol Geotherm Res 101:19–26Google Scholar
  112. Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press, CambridgeGoogle Scholar
  113. Kawakatsu H, Yamamoto M (2007) Volcano seismology. Treatise Geophys 4:389–420Google Scholar
  114. Kennel MB, Brown R, Abarbanel HDI (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45(6):3403–3411Google Scholar
  115. Kilburn CRJ (2003) Multiscale fracturing as a key to forecasting volcanic eruptions. J Volcanol Geotherm Res 125(3–4):271–289Google Scholar
  116. Klose CD (2006) Self-organizing maps for geoscientific data analysis: geological interpretation of multidimensional geophysical data. Comput Geosci 10(3):265–277Google Scholar
  117. Kohonen T (1982) Self-organised formation of topologically correct feature map. Biol Cybern 43:56–69Google Scholar
  118. Konstantinou KI (2002) Deterministic non-linear source processes of volcanic tremor signals accompanying the 1996 Vatnajökull eruption, Central Iceland. Geophys J Int 148(3):663–675Google Scholar
  119. Konstantinou KI, Lin CH (2004) Nonlinear time series analysis of volcanic tremor events recorded at Sangay volcano, Ecuador. Pure Appl Geophys 161(1):145–163Google Scholar
  120. Kuan CM, Hornik K (1995) The generalized fluctuation test: a unifying view. Econom Rev 14(2):135–161Google Scholar
  121. Langer H, Falsaperla S, Powell T, Thompson G (2006) Automatic classification and a-posteriori analysis of seismic event identification at Soufriere Hills volcano, Montserrat. J Volcanol Geotherm Res 153(1–2):1–10Google Scholar
  122. Langer H, Falsaperla S, Masotti M, Campanili R, Spampinato S, Messina A (2009) Synopsis of supervised and unsupervised pattern classification techniques applied to volcanic tremor data at Mt. Etna. Italy Geophys J Int 178:1132–1144. doi: 10.1111/j.1365-246X.2009.04179.x Google Scholar
  123. Langer H, Falsaperla S, Messina A, Spampinato S, Behncke B (2011) Detecting imminent eruptive activity at Mt Etna, Italy, in 2007–2008 through pattern classification of volcanic tremor data. J Volcanol Geotherm Res 200:1–17Google Scholar
  124. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791Google Scholar
  125. Lee C-W, Lu Z, Kwoun O-I, Won J-S (2008) Deformation of the Augustine Volcano, Alaska, 1992–2005, measured by ERS and ENVISAT SAR interferometry. Earth Planets Space 60(5):447–452Google Scholar
  126. Leibert W, Pawelzik K, Schuster HG (1991) Optimal embeddings of chaotic attractors from topological considerations. Europhys Lett 14:521–526Google Scholar
  127. Lesage P (2008) Automatic estimation of optimal autoregressive filters for the analysis of volcanic seismic activity. Nat Hazard Earth Syst Sci 8:369–376Google Scholar
  128. Lin M-J, Jeng Y (2010) Application of the VLF-EM method with EEMD to the study of a mud volcano in southern Taiwan. Geomorphology 119:97–110Google Scholar
  129. Lippmann RP (1987) Introduction to computing with neural nets. IEEE ASSP Mag 4(2):4–22Google Scholar
  130. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 Google Scholar
  131. Lovallo M, Marchese F, Pergola N, Telesca L (2007) Fisher information analysis of volcano-related advanced, very-high-resolution radiometer (AVHRR) thermal products time series. Phys A 384:529–534Google Scholar
  132. Lovallo M, Marchese F, Pergola N, Telesca L (2009) Fisher information measure of temporal fluctuations in satellite advanced very high resolution radiometer (AVHRR) thermal signals recorded in the volcanic area of Etna (Italy). Commun Nonlinear Anal Numer Simul 14:174–181Google Scholar
  133. Madonia P, Cusano P, Diliberto IS, Cangemi M (2013) Thermal anomalies in fumaroles at Vulcano island (Italy) and their relationship with seismic activity. Phys Chem Earth 63:160–169Google Scholar
  134. Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal and Mach Intell 11(7):674–693Google Scholar
  135. Marchese F, Pergola N, Telesca L (2006) Investigating the temporal fluctuations in satellite advanced very high resolution radiometer thermal signals measured in the volcanic area of Etna (Italy). Fluct Noise Lett 6:L305–L316Google Scholar
  136. Martini F, Tassi F, Vaselli O, Del Potro R, Martinez M, del Laat RV, Fernandez E (2010) Geophysical, geochemical and geodetical signals of reawakening at Turrialba volcano (Costa Rica) after almost 150 years of quiescence. J Volcanol Geotherm Res 198(3–4):416–432Google Scholar
  137. Marzocchi W, Sandri L, Furlan C (2006) A quantitative model for volcanic hazard assessment, Statistics in Volcanology, edited by Mader HM, Coles SG, Connor CB and Connor LJ, IAVCEI Publications, Geol Soc LondGoogle Scholar
  138. Marzocchi W, Sandri L, Selva J (2010) BET_VH: a probabilistic tool for long-term volcanic hazard assessment. Bull Volcanol 72(6):705–716Google Scholar
  139. Masotti M, Falsaperla S, Langer H, Spampinato S, Campanini R (2006) Application of support vector machine to the classification of volcanic tremor at Etna, Italy. Geophys Res Lett 33Google Scholar
  140. Masotti M, Campanini R, Mazzacurati L, Falsaperla S, Langer H, Spampinato S (2008) TREMOrEC: a software utility for automatic classification of volcanic tremor. Geochem Geophys Geosyst 9, Q04007. doi: 10.1029/2007GC001860 Google Scholar
  141. Matheron G (1962) Traité de géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 ppGoogle Scholar
  142. Mineva A, Popivanov D (1996) Method for single-trial readiness potential identification, based on singular spectrum analysis. J Neurosci Methods 68:91–99Google Scholar
  143. Nakano M, Kumagai H (2005) Response of a hydrothermal system to magmatic heat inferred from temporal variations in the complex frequencies of long-period events at Kusatsu–Shirane volcano. Jpn J Volcanol Geotherm 147:233–244Google Scholar
  144. Nakano M, Kumagai H, Kumazawa M, Yamaoka K, Chouet B (1998) The excitation and characteristic frequency of the long-period volcanic event: an approach based on an inhomogeneous autoregressive model of a linear dynamic system. J Geophys Res 103:10 031–10 046Google Scholar
  145. Newhall CG, Hoblitt RP (2002) Constructing event trees for volcanic crises. Bull Volcanol 64:3–20. doi: 10.1007/s004450100173 Google Scholar
  146. Ohrnberger M (2001) Continuous automatic classification of seismic signals of volcanic origin at Mt. Merapi, Java, Indonesia. Ph.D. thesis, Institut fuer Geowissenschaften, Universitaet PostdamGoogle Scholar
  147. Orozco-Alzate M, Acosta-Muñoz C and Makario Londoño-Bonilla J (2012) The automated identification of volcanic earthquakes: concepts, applications and challenges. Earthquake Research and Analysis—Seismology, Seismotectonic and Earthquake Geology, D’Amico S. (Ed.), ISBN: 978-953-307-991-2, InTech, CroatiaGoogle Scholar
  148. Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45(9):712–716Google Scholar
  149. Palo M, Cusano P (2013) Wavefield decomposition and phase space dynamics of the seismic noise at Volcàn de Colima, Mexico: evidence of a two-state source process. Nonlinear Processes Geophys 20:71–84Google Scholar
  150. Papageorgiou E, Foumelis M, Parcharidis I (2012) Long-and short-term deformation monitoring of Santorini volcano: unrest evidence by DInSAR analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5 (5), art. no. 6220261, 1531–1537Google Scholar
  151. Pistolesi M, Delle Donne D, Pioli L, Rosi M, Ripepe M (2011) The 15 March 2007 explosive crisis at Stromboli volcano, Italy: assessing physical parameters through a multidisciplinary approach. J Geophys Res Solid Earth 116, B12206Google Scholar
  152. Procaccia I (1988) Universal properties of dynamically complex systems: the organisation of chaos. Nature 333:618–623Google Scholar
  153. Pshenichny CA, Nikolenko SI, Carniel R, Vaganov PA, Khrabrykh ZV, Moukhachov VP, Akimova-Shterkhun VL, Rezyapkin AA (2009) The event bush as a semantic-based numerical approach to natural hazard assessment (exemplified by volcanology). Comput Geosci 35(5):1017–1034Google Scholar
  154. Rilling G, Flandrin P, Gonçalvès P (2002) Empirical mode decomposition MATLAB codes.
  155. Ripepe M, Harris AJL, Carniel R (2002) Thermal, seismic and infrasonic evidences of variable degassing rates at Stromboli volcano. J Volcanol Geotherm Res 118:285–297Google Scholar
  156. Rogers JA, Stephens JA (1995) SSAM real time seismic spectral amplitude measurement on PC and its application to volcano monitoring. Bull Seism Soc Am 85:632–639Google Scholar
  157. Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for the calculating largest Lyapunov exponents from small datasets. Phys D 65:117–134Google Scholar
  158. Rouwet D, Tassi F, Mora-Amador R, Sandri L, Chiarini V (2014) Past, present and future of volcanic lake monitoring. J Volcanol Geotherm Res, in pressGoogle Scholar
  159. Samsonov S, van der Kooij M, Tiampo K (2011) A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique. Comput Geosci 37(8):1083–1091Google Scholar
  160. Schick R, Riuscetti M (1973) An analysis of volcanic tremor at South-Italian volcanoes. Zeit Geophysik 39:262–274Google Scholar
  161. Schmidt MN, Larsen J, Hsiao FT, (2007) Wind noise reduction using non-negative sparse coding, in IEEE Workshop on Machine Learning for Signal Processing, 431–436Google Scholar
  162. Segall P (2013) Volcano deformation and eruption forecasting. Geochem Soc Spec Publ 380(1):85–106Google Scholar
  163. Shannon CE (1948) “A mathematical theory of communication”, Bell Syst Tech J, 27, 379–423 & 623–656Google Scholar
  164. Shaw R (1984) The dripping faucet as a model chaotic system. Aerial Press, Santa Cruz, CAGoogle Scholar
  165. Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210:1–15Google Scholar
  166. Sparks RSJ, Biggs J, Neuberg JW (2012) Monitoring volcanoes. Science 335:1310–1311Google Scholar
  167. Takens F (1981) Detecting strange attractors in turbulence, in dynamical systems and turbulence, lecture notes in mathematics, vol 898. Springer, Berlin, pp 336–381Google Scholar
  168. Tárraga M, Carniel R, Ortiz R, Marrero JM, García A (2006) On the predictability of volcano-tectonic events by low frequency seismic noise analysis at Teide-Pico Viejo volcanic complex, Canary Islands. Nat Hazards Earth Syst Sci 6:365–376Google Scholar
  169. Tárraga M, Carniel R, Ortiz R, García A (2008a) The failure forecast method. Review and application for the realtime detection of precursory patterns at reawakening volcanoes. Chapter 13 In: Gottsmann, J. and Marti, J (eds.): Caldera volcanism: analysis, modelling and response, Developments in Volcanology, Elsevier, Vol. 10, 447–469, doi: 10.1016/S1871-644X(07)00013-7
  170. Tárraga M, Carniel R, Ortiz R, García A, Moreno H (2008b) A dynamical analysis of the seismic activity of Villarrica volcano (Chile) during September–October 2000. Chaos, Solitons Fractals 37(5):1292–1299Google Scholar
  171. Tárraga M, De La Cruz-Reyna S, Mendoza-Rosas AT, Carniel R, Martínez-Bringas A, García A, Ortiz R (2012) Dynamical parameter analysis of continuous seismic signals of Popocatépetl volcano (Central Mexico): a case of tectonic earthquakes influencing volcanic activity. Acta Geophys 60(3):664–681. doi: 10.2478/s11600-012-0020-1 Google Scholar
  172. Telesca L, Lovallo M, Carniel R (2010) Time-dependent Fisher information measure of volcanic tremor before 5 April 2003 paroxysm at Stromboli volcano, Italy. J Volcanol Geotherm Res 195:78–82Google Scholar
  173. Tilling RI (1989) Volcanic hazards and their mitigation: progress and problems. Rev Geophys 27(2):237–269. doi: 10.1029/RG027i002p00237 Google Scholar
  174. Tokarev PI (1963) On a possibility of forecasting of Bezymianny volcano eruptions according to seismic data. Bull Volcanol 26:379–386Google Scholar
  175. UNDRO (1979) Natural disasters and vulnerability analysis. Office of the United Nations Disaster Relief Co-ordinator (UNDRO), Report of Expert Group Meeting (9–12 July 1979), UNDRO, GenevaGoogle Scholar
  176. Vapnik V (1998) Statistical learning theory. Wiley and Sons, NewYorkGoogle Scholar
  177. Vargas-Bracamontes DM, Nava FA, Reyes-Dávila GA (2009) Time-scale wavelet patterns related to the 1998–1999 eruptions of the Colima volcano, and their possible implications for eruption forecasting. J Volc Geotherm Res 184(3–4):271–284Google Scholar
  178. Vila J, Macià R, Kumar K, Ortiz R, Moreno H, Correig AM (2006) Analysis of the unrest of active volcanoes using variations of the base level noise seismic spectrum. J Volcanol Geotherm Res 153:11–20Google Scholar
  179. Voight B (1988) A method for prediction of volcanic eruptions. Nature 332(10):125–130Google Scholar
  180. Walden AT, Contreras Cristan A (1998) The phase-corrected undecimated discrete wavelet packet transform and its application to interpreting the timing of events. Proc R Soc A Math Phys Eng Sci 454:2243–2266Google Scholar
  181. Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoustics AU-15:70–73Google Scholar
  182. Weston J, Watkins C (1999) Multi-class support vector machines, Proc. ESANN99, ed. Verleysen M, D. Facto Press, BruxellesGoogle Scholar
  183. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41Google Scholar
  184. Wu C, Zhou R (2006) Application of Hilbert-Huang transform in extracting dynamic properties of seismic signals. J Earthq Eng Eng Vib 26(5):41–46Google Scholar
  185. Xue Y, Cao J, Tian R (2013) A comparative study on hydrocarbon detection using three EMD-based time–frequency analysis methods. J Appl Geophys 89:108–115Google Scholar
  186. Zeileis A (2005) A unified approach to structural change tests based on ML scores, F statistics, and OLS residuals. Econ Rev 24(4):445–466Google Scholar
  187. Zeileis A, Leisch F, Hornik K, Kleiber C (2002) strucchange: an R package for testing for structural change in linear regression models. J Stat Softw 7(2):1–38Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratorio di misure e trattamento dei segnali, DICAUniversità di UdineUdineItaly
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.CICTERRA–CONICET, Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations