Bulletin of Volcanology

, 76:839 | Cite as

From field data to volumes: constraining uncertainties in pyroclastic eruption parameters

  • Malin KlawonnEmail author
  • Bruce F. Houghton
  • Donald A. Swanson
  • Sarah A. Fagents
  • Paul Wessel
  • Cecily J. Wolfe
Research Article


In this study, we aim to understand the variability in eruption volume estimates derived from field studies of pyroclastic deposits. We distributed paper maps of the 1959 Kīlauea Iki tephra to 101 volcanologists worldwide, who produced hand-drawn isopachs. Across the returned maps, uncertainty in isopach areas is 7 % across the well-sampled deposit but increases to over 30 % for isopachs that are governed by the largest and smallest thickness measurements. We fit the exponential, power-law, and Weibull functions through the isopach thickness versus area1/2 values and find volume estimate variations up to a factor of 4.9 for a single map. Across all maps and methodologies, we find an average standard deviation for a total volume of s = 29 %. The volume uncertainties are largest for the most proximal (s = 62 %) and distal field (s = 53 %) and small for the densely sampled intermediate deposit (s = 8 %). For the Kīlauea Iki 1959 eruption, we find that the deposit beyond the 5-cm isopach contains only 2 % of the total erupted volume, whereas the near-source deposit contains 48 % and the intermediate deposit 50 % of the total volume. Thus, the relative uncertainty within each zone impacts the total volume estimates differently. The observed uncertainties for the different deposit regions in this study illustrate a fundamental problem of estimating eruption volumes: while some methodologies may provide better fits to the isopach data or rely on fewer free parameters, the main issue remains the predictive capabilities of the empirical functions for the regions where measurements are missing.


Isopachs Kīlauea Iki Pyroclastic deposits Tephra 



We wish to thank the many volcanologists who participated in this study. We also thank Wendy Cockshell and Isaac Ishihara for their assistance in processing the isopach maps. The thorough and constructive reviews by Dr. Raffaello Cioni and an anonymous reviewer are gratefully acknowledged. This study was supported by the Fred M. Bullard Fellowship and NSF awards EAR-0810332 and EAR-1145159.

Supplementary material

445_2014_839_MOESM1_ESM.pdf (2.7 mb)
ESM 1 (PDF 2.69 MB)


  1. Biass S, Bonadonna C (2011) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73:73–90CrossRefGoogle Scholar
  2. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40:415–418CrossRefGoogle Scholar
  3. Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456CrossRefGoogle Scholar
  4. Booth B, Walker GPL (1973) Ash deposits from the new explosion crater, Etna, 1971. Philos Trans R Soc London A Math Phys Sci 274(1238):147–151CrossRefGoogle Scholar
  5. Booth B, Croasdale R, Walker GPL (1978) A quantitative study of five thousand years of volcanism on Sao Miguel, Azores. Philos Trans R Soc London A Math Phys Sci 288(1352):271–319CrossRefGoogle Scholar
  6. Carey RJ, Houghton BF, Thordarson T (2009) Abrupt shifts between wet and dry phases of the 1875 eruption of Askja Volcano: microscopic evidence for macroscopic dynamics. J Volcanol Geotherm Res 184(3):256–270CrossRefGoogle Scholar
  7. Cioni R, Bertagnini A, Andronico D, Cole PD, Mundula F (2011) The 512 AD eruption of Vesuvius; complex dynamics of a small scale subplinian event. Bull Volcanol 73:789–810. doi: 10.1007/s00445-011-0454-3 CrossRefGoogle Scholar
  8. Engwell SL, Sparks RSJ, Aspinall WP (2013) Quantifying uncertainties in the measurement of tephra fall thickness. J of Appl Volcanol 2:5. doi: 10.1186/2191-5040-2-5 ( Scholar
  9. Fierstein J, Hildreth W (1992) The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bull Volcanol 54(8):646–684CrossRefGoogle Scholar
  10. Fierstein JE, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167CrossRefGoogle Scholar
  11. Klawonn M, Houghton BF, Swanson DA, Fagents SF, Wessel P, Wolfe CJ (2014) Constraining explosive volcanism: subjective choices during estimates of eruption magnitude and intensity. Bull Volcanol 76(2):1–6Google Scholar
  12. Le Pennec JL, Ruiz GA, Ramón P, Palacios E, Mothes P, Yepes H (2012) Impact of tephra falls on Andean communities: the influences of eruption size and weather conditions during the 1999–2001 activity of Tungurahua volcano, Ecuador. J Volcanol Geotherm Res 217:91–103CrossRefGoogle Scholar
  13. Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51:341–352CrossRefGoogle Scholar
  14. Nakada S, Nagai M, Kaneko T, Nozawa A, Suzuki-Kamata K (2005) Chronology and products of the 2000 eruption of Miyakejima Volcano, Japan. Bull Volcanol 67(3):205–218CrossRefGoogle Scholar
  15. Pyle DM (1989) The thickness, volume and grain size of tephra fall deposits. Bull Volcanol 51:1–15CrossRefGoogle Scholar
  16. Richter DH, Eaton JP, Murata KJ, Ault WU, Krivoy HL (1970) Chronological narrative of the 1959–60 eruption of Kilauea Volcano, Hawaii, U.S. Geological Survey Professional Paper 537-E, 73 pGoogle Scholar
  17. Rose WI, Self S, Murrow PJ, Bonadonna C, Durant AJ, Ernst GGJ (2008) Nature and significance of small volume fall deposits at composite volcanoes: insights from the October 14, 1974 Fuego eruption, Guatemala. Bull Volcanol 70:1043–1067CrossRefGoogle Scholar
  18. Rosi M, Paladio-Melosantos M, Di Muro A, Leoni R, Bacolcol T (2001) Fall vs flow activity during the 1991 climactic eruption of Pinatubo Volcano (Philippines). Bull Volcanol 62(8):549–566CrossRefGoogle Scholar
  19. Rosi M, Bertagnini A, Harris AJL, Pioli L, Pistolesi M, Ripepe M (2006) A case history of paroxysmal explosion at Stromboli: timing and dynamics of the April 5, 2003 event. Earth Planet Sci Lett 243(3):594–606CrossRefGoogle Scholar
  20. Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection. Wiley, New York, 329 ppCrossRefGoogle Scholar
  21. Sarna-Wojcicki AM, Shipley S, Waitt RB Jr, Dzurisin D, Wood SH (1981) Areal distribution, thickness, mass, volume, and grain size of air-fall ash from the six major eruptions of 1980. Washington, USGSGoogle Scholar
  22. Scollo S, Del Carlo P, Coltelli M (2007) Tephra fallout of 2001 Etna flank eruption: analysis of the deposit and plume dispersion. J Volcanol Geotherm Res 160(1):147–164CrossRefGoogle Scholar
  23. Volentik A, Bonadonna C, Connor CB, Connor LJ, Rosi M (2010) Modeling tephra dispersal in absence of wind: insights from the climactic phase of the 2450BP Plinian eruption of Pululagua volcano (Ecuador). J Volcanol Geotherm Res 193(1):117–136CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Malin Klawonn
    • 1
    Email author
  • Bruce F. Houghton
    • 1
  • Donald A. Swanson
    • 2
  • Sarah A. Fagents
    • 3
  • Paul Wessel
    • 1
  • Cecily J. Wolfe
    • 3
    • 4
  1. 1.Department of Geology and GeophysicsUniversity of Hawaii at MānoaHonoluluUSA
  2. 2.Hawaiian Volcano ObservatoryUS Geological ServiceSouth KonaUSA
  3. 3.Hawaii Institute of Geophysics and PlanetologyUniversity of Hawaii at MānoaHonoluluUSA
  4. 4.Natural Hazards, Risk and Resilience AssessmentUS Geological ServiceRestonUSA

Personalised recommendations