Bulletin of Volcanology

, 76:834 | Cite as

Volcanic jets, plumes, and collapsing fountains: evidence from large-scale experiments, with particular emphasis on the entrainment rate

  • P. Dellino
  • F. Dioguardi
  • D. Mele
  • M. D’Addabbo
  • B. Zimanowski
  • R. Büttner
  • D. M. Doronzo
  • I. Sonder
  • R. Sulpizio
  • T. Dürig
  • L. La Volpe
Research Article

Abstract

The source conditions of volcanic plumes and collapsing fountains are investigated by means of large-scale experiments. In the experiments, gas-particle jets issuing from a cylindrical conduit are forced into the atmosphere at different mass flow rates. Dense jets (high particle volumetric concentration, e.g., C0 > 0.01) generate collapsing fountains, whose height scales with the squared exit velocity. This is consistent with Bernoulli’s equation, which is a good approximation if air entrainment is negligible. In this case, kinetic energy is transformed into potential energy without any significant loss by friction with the atmosphere. The dense collapsing fountain, on hitting the ground, generates an intense shear flow similar to a pyroclastic density current. Dilute hot jets (low particle volumetric concentration, e.g., C0 < 0.01) dissipate their initial kinetic energy at much smaller heights than those predicted by Bernoulli’s equation. This is an indication that part of the total mechanical energy is lost by friction with the atmosphere. Significant air entrainment results in this case, leading to the formation of a buoyant column (plume) from which particles settle similarly to pyroclastic fallout. The direct measurement of entrainment coefficient in the experiments suggests that dense collapsing fountains form only when air entrainment is not significant. This is a consequence of the large density difference between the jet and the atmosphere. Cold dilute experiments result in an entrainment coefficient of about 0.06, which is typical of pure jets of fluid dynamics. Hot dilute experiments result in an entrainment coefficient of about 0.11, which is typical of thermally buoyant plumes. The entrainment coefficients obtained by experiments were used as input data in numerical simulations of fountains and plumes. A numerical model was used to solve the classic top-hat system of governing equations, which averages the field variables (e.g., column velocity and density) across the column. The maximum heights calculated with the model agree well with those observed experimentally, showing that our entrainment coefficients are compatible with a top-hat model. Dimensional analysis of the experimental data shows that a value of 3 for the source densimetric Froude number characterizes the transition between dense collapsing fountains and dilute plumes. This value delimits the source conditions (exit velocity, conduit radius, and particle volumetric concentration) for pyroclastic flow (<3) and fallout (>3).

Keywords

Explosive eruptions Eruptive columns Negatively buoyant jets Collapsing fountains Densimetric Froude number Turbulent entrainment 

References

  1. Andrews B, Gardner J (2009) Turbulent dynamics of the 18 May 1980 Mount St. Helens eruption column. Geology 37(10):895–898. doi:10.1130/G30168A.1 CrossRefGoogle Scholar
  2. Bloomfield LJ, Kerr RC (2000) A theoretical model of a turbulent fountain. J Fluid Mech 424:197–216. doi:10.1017/S0022112000001907 CrossRefGoogle Scholar
  3. Carazzo G, Kaminski E, Tait S (2006) The route to self-similarity in turbulent jets and plumes. J Fluid Mech 547:137–148. doi:10.1017/S002211200500683X CrossRefGoogle Scholar
  4. Carazzo G, Kaminski E, Tait S (2008) On the dynamics of volcanic columns: a comparison of field data with a new model of negatively buoyant jets. J Volcanol Geotherm Res 178:94–103. doi:10.1016/j.jvolgeores.2008.01.002 CrossRefGoogle Scholar
  5. Carazzo G, Kaminski E, Tait S (2010) The rise and fall of turbulent fountains: a new model for improved quantitative predictions. J Fluid Mech 657:265–284. doi:10.1017/S002211201000145X CrossRefGoogle Scholar
  6. Cioni R, Marianelli P, Santacroce R, Sbrana A (2000) Plinian and subplinian eruptions. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, New York, pp 477–494Google Scholar
  7. Costa A, Macedonio G, Folch A (2006) A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet Sci Lett 241:634–647. doi:10.1016/j.epsl.2005.11.010 CrossRefGoogle Scholar
  8. Degruyter W, Bonadonna C (2013) Impact of wind on the condition for column collapse of volcanic plumes. Earth Planet Sci Lett 377–378:218–226. doi:10.1016/j.epsl.2013.06.041 CrossRefGoogle Scholar
  9. Dellino P, Zimanowski B, Büttner R, La Volpe L, Mele D, Sulpizio R (2007) Large-scale experiments on the mechanics of pyroclastic flows: design, engineering, and first results. J Geophys Res 112, B04202. doi:10.1029/2006JB004313 Google Scholar
  10. Dellino P, Dioguardi F, Zimanowski B, Büttner R, Mele D, La Volpe L, Sulpizio R, Doronzo DM, Sonder I, Bonasia R, Calvari S, Marotta E (2010) Conduit flow experiments help constraining the regime of explosive eruptions. J Geophys Res 115, B04204. doi:10.1029/2009JB006781 Google Scholar
  11. Dioguardi F, Dellino P, de Lorenzo S (2013) Integration of large-scale experiments and numerical simulations for the calibration of friction laws in volcanic conduit flows. J Volcanol Geotherm Res 250:75–90. doi:10.1016/j.jvolgeores.2012.09.011 CrossRefGoogle Scholar
  12. Fischer HB, List EJ, Koh RCY, Imberger J, Brooks NH (1979) Mixing in inland and coastal waters. Academic, New YorkGoogle Scholar
  13. Formenti Y, Druitt TH, Kelfoun K (2003) Characterization of the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat, by video analysis. Bull Volcanol 65:587–605. doi:10.1007/s00445-003-0288-8 CrossRefGoogle Scholar
  14. Isaia R, D’Antonio M, Dell’Erba F, Di Vito M, Orsi G (2004) The Astroni volcano: the only example of closely spaced eruptions in the same vent area during the recent history of the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 133:171–192. doi:10.1016/S0377-0273(03)00397-4 CrossRefGoogle Scholar
  15. Kaminski E, Tait S, Carazzo G (2005) Turbulent entrainment in jets with arbitrary buoyancy. J Fluid Mech 526:361–376. doi:10.1017/S0022112004003209 CrossRefGoogle Scholar
  16. Kaye NB, Hunt GR (2006) Weak fountains. J Fluid Mech 558:319–328. doi:10.1017/S0022112006000383 CrossRefGoogle Scholar
  17. Koyaguchi T, Woods AW (1996) On the formation of eruption columns and pyroclastic flow generations. J Geophys Res 101(B3):5561–5574CrossRefGoogle Scholar
  18. Koyaguchi T, Suzuki YJ, Kozono T (2010) Effects of the crater on eruption column dynamics. J Geophys Res 115, B07205. doi:10.1029/2009JB007146 Google Scholar
  19. Lin W, Armfield SW (2000) Direct simulation of weak axisymmetric fountains in a homogeneous fluid. J Fluid Mech 403:67–88. doi:10.1017/S0022112099006953 CrossRefGoogle Scholar
  20. Lin W, Armfield SW (2008) Onset of entrainment in transitional round fountains. Int J Heat Mass Transfer 51:5226–5237. doi:10.1016/j.ijheatmasstransfer.2008.02.047 CrossRefGoogle Scholar
  21. McDougall TJ (1981) Negatively buoyant vertical jets. Tellus 33:313–320CrossRefGoogle Scholar
  22. Mele D, Sulpizio R, Dellino P, La Volpe L (2011) Stratigraphy and eruptive dynamics of a pulsating Plinian eruption of Somma-Vesuvius: the Pomici di Mercato (8900 years B.P.). J Volcanol Geotherm Res 73:257–278. doi:10.1007/s00445-010-0407-2 Google Scholar
  23. Morton BR, Taylor GI, Turner JS (1956) Turbulent gravitational convection from maintained and instantaneous source. Proc R Soc Lond 234:1–23CrossRefGoogle Scholar
  24. Ogden DE, Glatzmeier GA, Wohletz KH (2008) Effects of vent overpressure on buoyant eruption columns: implications for plume stability. Earth Planet Sci Lett 268:283–292. doi:10.1016/j.epsl.2008.01.014 CrossRefGoogle Scholar
  25. Papanicolaou PN, List EJ (1988) Investigations of round vertical turbulent buoyant jets. J Fluid Mech 195:341–391. doi:10.1017/S0022112088002447 CrossRefGoogle Scholar
  26. Papanicolaou PN, Papakonstantis IG, Christodoulou GC (2008) On the entrainment coefficient in negatively buoyant jets. J Fluid Mech 614:447–470. doi:10.1017/S0022112008003509 CrossRefGoogle Scholar
  27. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996) Numerical recipes in Fortran 90. The art of parallel scientific computing, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  28. Saffaraval F, Solovitz SA, Ogden DE, Mastin LG (2012) Impact of reduced near-field entrainment of overpressured volcanic jets on plume development. J Geophys Res 117, B05209. doi:10.1029/2011JB008862 Google Scholar
  29. Sparks RSI, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, New YorkGoogle Scholar
  30. Sulpizio R, Folch A, Costa A, Scaini C, Dellino P (2012) Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil aviation. Bull Volcanol 74:2205–2218. doi:10.1007/s00445-012-0656-3 CrossRefGoogle Scholar
  31. Suzuki YJ, Koyaguchi T (2009) A three-dimensional numerical simulation of spreading umbrella clouds. J Geophys Res 114, B03209. doi:10.1029/2007JB005369 Google Scholar
  32. Suzuki YJ, Koyaguchi T (2012) 3-D numerical simulations of eruption column collapse: effects of vent size on pressure-balanced jet/plumes. J Volcanol Geotherm Res 221–222:1–12. doi:10.1016/j.jvolgeores.2012.01.013 CrossRefGoogle Scholar
  33. Suzuki YJ, Koyaguchi T, Ogawa M, Hachisu I (2005) A numerical study of turbulent mixing in eruption clouds using a three-dimensional fluid dynamics model. J Geophys Res 110, B08201. doi:10.1029/2004JB003460 Google Scholar
  34. Turner JS (1966) Jets and plumes with negative or reversing buoyancy. J Fluid Mech 26:779–792. doi:10.1017/S0022112066001526 CrossRefGoogle Scholar
  35. Turner JS (1986) Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J Fluid Mech 173:431–471. doi:10.1017/S0022112086001222 CrossRefGoogle Scholar
  36. Wilson L (1976) Explosive volcanic eruptions—III. Plinian eruption columns. Geophys J R Astron Soc 45:543–556CrossRefGoogle Scholar
  37. Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions—IV. The control of magma properties and conduit geometry on eruption column behavior. Geophys J R Astron Soc 63:117–148CrossRefGoogle Scholar
  38. Woods AW (1988) The fluid dynamics and thermodynamics of eruption columns. Bull Volcanol 50:169–193. doi:10.1007/BF01079681 CrossRefGoogle Scholar
  39. Woods AW (1993) Moist convection and the injection of volcanic ash into the atmosphere. J Geophys Res 98:17627–17636. doi:10.1029/93JB00718 CrossRefGoogle Scholar
  40. Woods AW (2010) Turbulent plumes in nature. Annu Rev Fluid Mech 43:391–412. doi:10.1146/annurev-fluid-121108-145430 CrossRefGoogle Scholar
  41. Woods AW, Bursik M (1991) Particle fallout, thermal disequilibrium and volcanic plumes. Bull Volcanol 53:559–570. doi:10.1007/BF00298156 CrossRefGoogle Scholar
  42. Woods AW, Caulfield CP (1992) A laboratory study of explosive volcanic eruptions. J Geophys Res 97:6699–6712. doi:10.1029/92JB00176 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. Dellino
    • 1
  • F. Dioguardi
    • 1
  • D. Mele
    • 1
  • M. D’Addabbo
    • 1
  • B. Zimanowski
    • 2
  • R. Büttner
    • 2
  • D. M. Doronzo
    • 1
  • I. Sonder
    • 3
  • R. Sulpizio
    • 1
    • 5
  • T. Dürig
    • 4
  • L. La Volpe
    • 1
  1. 1.Dipartimento di Scienze della Terra e GeoambientaliUniversità degli Studi di Bari “Aldo Moro”BariItaly
  2. 2.Physikalisch Vulkanologisches LaborUniversität WürzburgWürzburgGermany
  3. 3.Center for GeoHazards StudiesUniversity at BuffaloBuffaloUSA
  4. 4.Institute of Earth SciencesUniversity of IcelandReykjavíkIceland
  5. 5.IDPA-CNRMilanItaly

Personalised recommendations