Bulletin of Volcanology

, 76:825 | Cite as

Volcanic alert system (VAS) developed during the 2011–2014 El Hierro (Canary Islands) volcanic process

  • Alicia García
  • Manuel Berrocoso
  • José M. Marrero
  • Alberto Fernández-Ros
  • Gonçalo Prates
  • Servando De la Cruz-Reyna
  • Ramón Ortiz
Research Article


The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.


VAL Monogenetic Deformation Cumulative seismic energy Aceleration El Hierro Island 



This research has been funded by the projects from the CSIC (2011-30E070) and MINECO (CGL2011-28682-C02-01). The authors are grateful to the DGAPA UNAM-CSIC academic exchange and DGAPA-PAPIIT-UNAM programs for their support. We used seismic data from the IGN (, public website, ⒸInstituto Geogrfico Nacional); from the EMSC (; and NEIC-USGS ( The deformation data were obtained from the GRAFCAN GNSS-GPS public network, Canarian Government. All of the data have been complemented and updated with CSIC-UCA networks. We are indebted to the Cabildo Insular de El Hierro, and its three municipalities (Valverde, El Pinar de El Hierro and Frontera) for their support. Last, but not least, we wish to thank all of the people living on El Hierro for their encouragement and understanding of our scientific work. The comments of the reviewers (Carina Fearnley and anonymous) and the Associate Editor Matthew R. Patrick greatly helped to improve the quality of this manuscript.


  1. Aspinall W P (2006) Structured elicitation of expert judgment for probabilistic hazard and risk assessment in volcanic eruptions. In: Mader M, Coles G, Connor B (eds) Statistics in Volcanology, vol 1. Special Publications of IAVCEI. Geological Society, London, pp 34–66Google Scholar
  2. Basher R (2006) Global early warning systems for natural hazards—Systematic and people-centred. Roy Soc Discuss Meet Extreme Nat Hazards R Soc London Trans A 364: 2167–2182CrossRefGoogle Scholar
  3. Bell AF, Naylor M, Heap MJ, Main IG (2011) Forecasting volcanic eruptions and other material failure phenomena: an evaluation of the failure forecast method. Geophys Res Lett 38: L15304. Google Scholar
  4. Berrocoso M, Carmona J, Fernández-Ros A, Pérez-Peña A, Ortiz R, García A (2010) Kinematic model for Tenerife Island (Canary Islands, Spain): geodynamic interpretation in the Nubian plate context. J Afr Earth Sci 58: 721–733. doi:10.1016/j.jafrearsci. 2010.04.007CrossRefGoogle Scholar
  5. Bignami C, Vittorio B, Costantini L, Cristiani C, Lavigne F, Thierry P (eds) (2012) Handbook for volcanic risk management. Prevention, crisis management, resilience. European commission under the 7th framework programme for research and technological development. OrleansGoogle Scholar
  6. BOC July, 1 (2010) Decreto 73/2010, 1 julio, por el que se aprueba el Plan Especial de Protección Civil y Atención de Emergencias por riesgo volcánico en la Comunidad Autónoma de Canarias (PEVOLCA). Accessed 19 April 2013 [In Spanish]
  7. BOE June, 18 (2004) Real Decreto 1476/2004, de 18 de junio, por el que se desarrolla la estructura orgánica básica del Ministerio de Fomento. Accessed 19 Apri 2013 [In Spanish]
  8. BOE March, 5 (2012) Real Decreto 452/2012, de 5 de marzo, por el que se desarrolla la estructura orgánica básica del Ministerio de Fomento y se modifica el Real Decreto 1887/2011, de 30 de diciembre, por el que se establece la estructura orgánica básica de los departamentos ministeriales. Accessed 19 April 2013 [In Spanish]
  9. Budi-Santoso A, Lesage P, Dwiyono S, Sumarti S, Subandriyo, Surono, Jousset P, Metaxian JP (2013) Analysis of the seismic activity associated with the 2010 Eruption of Merapi Volcano, Java. J Volcanol Geotherm Res 261: 153–170. doi:10.1016/j. j.jvolgeores.2013.03.024CrossRefGoogle Scholar
  10. Carniel R, Ortiz R, Cecca D (2006) Spectral and dynamical hints on the time scale of preparation of the 5 April 2003 explosion at Stromboli volcano. Can J Earth Sci 43: 41–55CrossRefGoogle Scholar
  11. Carracedo JC, Day SJ, Guillou H, Pérez-Torrado FJ (1999) Giant quaternary landslides in the evolution of La Palma and El Hierro, Canary Islands. J Volcanol Geotherm Res 94: 169–190. CrossRefGoogle Scholar
  12. Carracedo J C, Rodríguez-Badiola E R, Guillou H, de la Nuez J, Pérez-Torrado FJ (2001) Geology and volcanology of La Palma and El Hierro, Western Canaries. Estud Geol 57: 175–273CrossRefGoogle Scholar
  13. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0. Tech. rep., Astronomical Institute, University of BernGoogle Scholar
  14. De la Cruz-Reyna S, Reyes-Dávila GA (2001) A model to describe precursory material-failure phenomena: applications to short-term forecasting at Colima volcano, Mexico. Bull Volcanol 63: 297–308. CrossRefGoogle Scholar
  15. De la Cruz-Reyna S, Tárraga M, Ortiz R, Martínez-Bringas A (2010) Tectonic earthquakes triggering volcanic seismicity and eruptions. Case studies at Tungurahua and Popocatépetl volcanoes. J Volcanol Geotherm Res 193: 37–48. doi:10.1016/j.jvolgeores.2010. 03.005CrossRefGoogle Scholar
  16. De la Cruz-Reyna S, Tilling R (2008) Scientific and public responses to the ongoing volcanic crisis at Popocatepetl Volcano, Mexico: Importance of an effective hazards-warning systeḿ. J Volcanol Geotherm Res 170: 121–134. doi:10.1016/j.jvolgeores.2007. 09.002CrossRefGoogle Scholar
  17. Donovan A, Oppenheimer C, Bravo M (2012) Science at the policy interface: volcano-monitoring technologies and volcanic hazard management. Bull Volcanol 74: 1005–1022. CrossRefGoogle Scholar
  18. Fearnley C J (2011) Standardising the USGS volcano alert level system: acting in the context of risk, uncertainty and complexity. Doctoral thesis, Department of Earth Sciences. University College London, LondonGoogle Scholar
  19. Fearnley CJ (2013) Assigning a volcano alert level: Negotiating uncertainty, risk, and complexity in decision-making processes. Environ Plann A 45: 1891–1911. CrossRefGoogle Scholar
  20. Fukuzono T (1985) A new method for predicting the failure time of a slope. In: IV international conference and field workshop on landslides, Tokyo, pp. 145–150Google Scholar
  21. García A, Fernández-Ros A, Berrocoso M, Marrero J, Prates G, De la Cruz-Reyna S, Ortiz R (2014) Magma displacements beneath insular volcanic fields, applications to monogenetic eruption forecasting: El Hierro, Canary Islands, Spain 2011-2012 events. Geophys J Int 196: 1–13. CrossRefGoogle Scholar
  22. García A, Vila J, Ortiz R, Marcía R, Sleeman R, Marrero JM, Sánchez N, Tárraga M, Correig AM (2006) Monitoring the reawakening of Canary Islands’ Teide Volcano. Eos Trans AGU 87: 61–65. CrossRefGoogle Scholar
  23. Gee M J, Watts A B, Masson D G, Mitchell N C (2001) Landslides and the evolution of El Hierro in the Canary Islands. Mar Geol 177: 271–293CrossRefGoogle Scholar
  24. Gutenberg B, Richter C F (1944) Frequency of earthquakes in California. B Seismol Soc Am 34: 185–188Google Scholar
  25. Hammer C, Ohrnberger M (2012) Forecasting seismo-volcanic activity by using the dynamical behavior of volcanic earthquake rates. J Volcanol Geotherm Res 229: 34–43. doi:10.1016/j. jvolgeores.2012.01.016CrossRefGoogle Scholar
  26. Hernández-Pacheco A (1982) Sobre una posible erupción en 1793 en la isla de El Hierro (Canarias). Estud Geol 38: 15–26Google Scholar
  27. Hill DP (1998) 1998 SSA meeting-presidential address: science, geologic hazards, and the public in a large, restless Caldera. Seismol Res Lett 69: 400–404. CrossRefGoogle Scholar
  28. Hill D P, Dzurisin D, Ellsworth W L, Endo E T, Galloway D, Gerlach T M, Johnston M J, Langbein J, McGee K A, Dan Miller C, Oppenheimer D, Sorey M L (2002) Response plan for volcano hazards in the Long Valley Caldera and Mono Craters region, California, USGS bulletin 2185, U.S. Department of the Interior. U.S. Geological Survey.
  29. Ibáñez JM, De Angelis S, Díaz-Moreno A, Hernández P, Alguacil G, Posadas A, Pérez N (2012) Insights into the 2011-2012 submarine eruption off the coast of El Hierro (Canary Islands, Spain) from statistical analyses of earthquake activity. Geophys J Int 191: 659–670. CrossRefGoogle Scholar
  30. Jordan TH, Chen YT, Gasparini P, Madariaga R, Main I, Marzocchi W, Papadopoulos G, Sobolev G, Yamaoka K, Zschau J (2011) Operational earthquake forecasting. State of knowledge and guidelines for utilization. Ann Geophys-Italy 54: 315–391. Google Scholar
  31. Kalman R E (1960) A new approach to linear filtering and prediction problems. J Basic Eng-T Asme 82: 35–45CrossRefGoogle Scholar
  32. Kilburn CR (2003) Multiscale fracturing as a key to forecasting volcanic eruptions. J Volcanol Geotherm Res 125: 271–289. CrossRefGoogle Scholar
  33. López C, Blanco MJ, Abella R, Brenes B, Rodríguez-Cabrera VM, Casas B, Cerdeña ID, Felpeto A, de Villalta F, del Fresno C, García O, García-Arias M, García-Cañada L, Gomis-Moreno A, González-Alonso E, Guzmán-Pérez J, Iribarren I, López-Díaz R, Luengo-Oroz N, Meletlidis S, Moreno M, Moure D, Pereda de Pablo J, Rodero C, Romero E, Sainz-Maza S, Sentre-Domingo M, Torres P, Trigo P, Villasante-Marcos V (2012) Monitoring the volcanic unrest of El Hierro (Canary Islands) before the onset of the 2011-2012 submarine eruption. Geophys Res Lett 39: L13303. Google Scholar
  34. Marrero J, García A, Llinares A, Rodriguez-Losada J, Ortiz R (2012) A direct approach to estimating the number of potential fatalities from an eruption: application to the central volcanic complex of Tenerife Island. J Volcanol Geotherm Res 219: 33–40. CrossRefGoogle Scholar
  35. Martí J, Aspinall W, Sobradelo R, Felpeto A, Geyer A, Ortiz R, Baxter P, Cole P, Pacheco J, Blanco M, López C (2008) A long-term volcanic hazard event tree for Teide-Pico Viejo stratovolcanoes (Tenerife, Canary Islands). J Volcanol Geotherm Res 178: 543–552. CrossRefGoogle Scholar
  36. Martí J, Ortiz R, Gottsmann J, García A, De La Cruz-Reyna S (2009) Characterising unrest during the reawakening of the central volcanic complex on Tenerife, Canary Islands, 2004–2005, and implications for assessing hazards and risk mitigation. J Volcanol Geotherm Res 182: 23–33. CrossRefGoogle Scholar
  37. Marzocchi W, Bebbington MS (2012) Probabilistic eruption forecasting at short- and long-time scales. Bull Volcanol 74: 1777–1805. CrossRefGoogle Scholar
  38. Marzocchi W, Newhall C, Woo G (2012) The scientific management of volcanic crises. J Volcanol Geotherm Res 247–248: 181–189. CrossRefGoogle Scholar
  39. Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109: B11201. Google Scholar
  40. Marzocchi W, Sandri L, Selva J (2008) BET_EF: a probabilistic tool for long- and short-term eruption forecasting. Bull Volcanol 70: 623–632. CrossRefGoogle Scholar
  41. Mitchell N C, Masson D G, Watts A B, Gee M J, Urgeles R (2002) The morphology of the submarine flanks of volcanic ocean islands: a comparative study of the Canary and Hawaiian hotspot islands. J Volcanol Geotherm Res 115: 83–107CrossRefGoogle Scholar
  42. Newhall C, Hoblitt R (2002) Constructing event trees for volcanic crises. Bull Volcanol 64: 3–20. CrossRefGoogle Scholar
  43. Ogata Y (2006) Toward urgent forecasting of aftershock hazard: simultaneous estimation of b-value of the Gutenberg-Richter’s law of the magnitude frequency and changing detection rates of aftershocks immediately after the mainshock. In: The 4th international workshop on statistical seismology (Statsei4), The Graduate University for Advanced StudiesGoogle Scholar
  44. Ortiz R, Moreno H, García A, Fuentealba G, Astiz M, Peña P, Sánchez N, Tárraga M (2003) Villarrica volcano (Chile): characteristics of the volcanic tremor and forecasting of small explosions by means of a material failure method. J Volcanol Geotherm Res 128: 247–259. CrossRefGoogle Scholar
  45. Papadopoulos G, Baskoutas I (2009) New tool for the spatio-temporal variation analysis of seismic parameters. Nat Hazards Earth Syst Sci 9: 859–864. CrossRefGoogle Scholar
  46. Pérez NM, Hernández PA, Padrón E, Melián G, Nolasco D, Barrancos J, Padilla G, Calvo D, Rodríguez F, Dionis S (2013) An increasing trend of diffuse CO 2 emission from Teide volcano (Tenerife, Canary Islands): geochemical evidence of magma degassing episodes. J Geol Soc London 170: 585–592. CrossRefGoogle Scholar
  47. Prates G, Berrocoso M, Fernández-Ros A, García A (2013a) Enhancement of sub-daily positioning solutions for surface deformation monitoring at Deception volcano (South Shetland Islands, Antarctica). Bull Volcanol 75: 1–10Google Scholar
  48. Prates G, García A, Fernández-Ros A, Marrero JM, Ortiz R, Berrocoso M (2013b) Enhancement of sub-daily positioning solutions for surface deformation surveillance at El Hierro volcano (Canary Islands - Spain). Bull Volcanol 75: 1–9. Google Scholar
  49. Reyes-Dávila GA, De la Cruz-Reyna S (2002) Experience in the short-term eruption forecasting at Volcan de Colima, México, and public response to forecastś. J Volcanol Geotherm Res 117: 121–127. CrossRefGoogle Scholar
  50. Selva J, Marzocchi W, Papale P, Sandri L (2012) Operational eruption forecasting at high-risk volcanoes: the case of Campi Flegrei, Naples. J Appl Volcan 1: 5. CrossRefGoogle Scholar
  51. Shi Y, Bolt B A (1982) The standard error of the magnitude-frequency b value. B Seismol Soc Am 72: 1677–1687Google Scholar
  52. Sparks R (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210: 1–15. CrossRefGoogle Scholar
  53. Stroncik N, Klügel A, Hansteen T (2009) The magmatic plumbing system beneath El Hierro (Canary Islands): constraints from phenocrysts and naturally quenched basaltic glasses in submarine rocks. Contrib Mineral Petr 157: 593–607. CrossRefGoogle Scholar
  54. Tárraga M, Carniel R, Ortiz R, Marrero JM, García A (2006) On the predictability of volcano-tectonic events by low frequency seismic noise analysis at Teide-Pico Viejo volcanic complex, Canary Islands. Nat Hazards Earth Syst Sci 6: 365–376. doi:10.5194/ nhess-6-365-2006CrossRefGoogle Scholar
  55. Utsu T (1971) Aftershocks and Earthquake Statistics (III): analyses of the distribution of earthquakes in magnitude, time and space with special consideration to clustering characteristics of earthquake occurrence (1). Journal of the Faculty of Science, Hokkaido University Series 7. Geophysics 3: 379–441Google Scholar
  56. Voight B (1988) A method for prediction of volcanic eruptions. Nat 332: 125–130. CrossRefGoogle Scholar
  57. White JD, Schmincke HU (1999) Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma (Canary Islands). J Volcanol Geotherm Res 94: 283–304. doi:10.1016/ S0377-0273(99)00108-0CrossRefGoogle Scholar
  58. Woo G, Marzocchi W (2014) Operational earthquake forecasting and decision-making. In: Wenzel F, Zschau J (eds) Early Warning for Geological Disasters. Scientific Methods and Current Practice 18. Springer, pp 353–367Google Scholar
  59. Yokoyama I (1988) Seismic energy releases from volcanoes. Bull Volcanol 50: 1–13. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alicia García
    • 1
  • Manuel Berrocoso
    • 2
  • José M. Marrero
    • 3
  • Alberto Fernández-Ros
    • 2
  • Gonçalo Prates
    • 4
  • Servando De la Cruz-Reyna
    • 5
  • Ramón Ortiz
    • 1
  1. 1.Institute IGEO, CSIC-UCMMadridSpain
  2. 2.LAG-Faculty of SciencesCádiz UniversityCádizSpain
  3. 3.Volcanic hazard and risk consultantTenerifeSpain
  4. 4.Universidade do AlgarveFaroPortugal
  5. 5.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico

Personalised recommendations