Bulletin of Volcanology

, 76:824 | Cite as

Textural and rheological evolution of basalt flowing down a lava channel

  • Bénédicte Robert
  • Andrew HarrisEmail author
  • Lucia Gurioli
  • Etienne Médard
  • Alexander Sehlke
  • Alan Whittington
Research Article


The Muliwai a Pele lava channel was emplaced during the final stage of Mauna Ulu’s 1969–1974 eruption (Kilauea, Hawaii). The event was fountain-fed and lasted for around 50 h, during which time a channelized flow system developed, in which a 6-km channel fed a zone of dispersed flow that extended a further 2.6 km. The channel was surrounded by initial rubble levees of ’a’a, capped by overflow units of limited extent. We sampled the uppermost overflow unit every 250 m down the entire channel length, collecting, and analyzing 27 air-quenched samples. Bulk chemistry, density and textural analyses were carried out on the sample interior, and glass chemistry and microlite crystallization analyses were completed on the quenched crust. Thermal and rheological parameters (cooling, crystallization rate, viscosity, and yield strength) were also calculated. Results show that all parameters experience a change around 4.5 km from the vent. At this point, there is a lava surface transition from pahoehoe to ’a’a. Lava density, microlite content, viscosity, and yield strength all increase down channel, but vesicle content and lava temperature decrease. Cooling rates were 6.7 °C/km, with crystallization rates increasing from 0.03 Фc/km proximally, to 0.14 Фc/km distally. Modeling of the channel was carried out using the FLOWGO thermo-rheological model and allowed fits for temperature, microlite content, and channel width when run using a three-phase viscosity model based on a temperature-dependent viscosity relation derived for this lava. The down flow velocity profile suggests an initial velocity of 27 m/s, declining to 1 m/s at the end of the channel. Down-channel, lava underwent cooling that induced crystallization, causing both the lava viscosity and yield strength to increase. Moreover, lava underwent degassing and a subsequent vesicularity decrease. This aided in increasing viscosity, with the subsequent increase in shearing promoting a transition to ’a’a.


Lava channel Vesicles Cooling Crystallization Rheology Pahoehoe ’a’a 



AW and AS were supported by NSF grant EAR-1220051 and NASA grant NNX12AO44G. We thank the National Park Service for granting us a research and sampling permit. This is Laboratory of Excellence CLERVOLC contribution 97.

Supplementary material

445_2014_824_MOESM1_ESM.doc (71 kb)
Appendix 1 Sample descriptions and characteristics (SG Smooth Golden, Phh Pahoehoe, trans transition). While sheet flows are extensive smooth surfaced sheets of pahoehoe, lobes are small paohoehoe toes. (DOC 71 kb)
445_2014_824_MOESM2_ESM.doc (73 kb)
Appendix 2 Major element bulk chemistry data (wt%). Analytical error (2σ) are 0.91 % for SiO2, 1.71 % for Al2O3, 0.37 % for Fe2O3, 1.60 % for MgO, 0.23 % for CaO, 1.41 % for Na2O, 7.93 % for K2O, 3.69 % for TiO2, 1.94 % for MnO, and 2.82 % for P2O5 (DOC 73 kb)
445_2014_824_MOESM3_ESM.doc (40 kb)
Appendix 3 a) Textural characteristics of each sample (N vcorr is the vesicle number density per volume corrected for vesicularity and crystallinity) (DOC 39 kb)
445_2014_824_Fig14_ESM.jpg (2.6 mb)

b) Comparison between overflow samples and their pond (P), spatter (Sp), and tube roof (TR) equivalent samples (JPEG 2648 kb)

445_2014_824_MOESM4_ESM.doc (51 kb)
Appendix 5 Viscosity data for remelted Mauna Ulu basalt. For high temperature viscosity measurements, at each temperature, three individual measurements with durations of 5 min of stable readings at different angular velocities have been conducted. Around 1230.7 °C, viscosity steadily increases, indicating sufficient undercooling allowing crystallization to occur. For low temperature viscosity measurements, measurements were made on two cylindrical sample cores A and B (DOC 51 kb)


  1. Bottinga Y, Weill DF (1970) Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Am J Sci 269:169–182CrossRefGoogle Scholar
  2. Cashman KV, Thornber C, Kauahikaua (1999) Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe Lava to ‘A’ā. Bull Volcanol 61:306–323CrossRefGoogle Scholar
  3. Crisp J, Cashman KV, Bonini JA, Hougen SB, Pieri DC (1994) Crystallization history of the 1984 Mauna Loa lava flow. J Geophys Res 99:7177–7198CrossRefGoogle Scholar
  4. Einstein A (1906) Eine neue Bestimmung der Molekuldimension. Ann Phys 19:289–306CrossRefGoogle Scholar
  5. Fink JH, Zimbelman J (1990) Longitudinal variations in rheological properties of lavas: Puu Oo basalt flows, Kilauea Volcano, Hawaii. In: Fink JH (ed) Lavas flows and domes. Springer, Berlin, pp 157–173CrossRefGoogle Scholar
  6. Flynn LP, Mouginis-Mark PJ (1992) Cooling rate of an active Hawaiian lava flow from nighttime spectroradiometer measurements. Geophys Res Lett 19:1783–1786CrossRefGoogle Scholar
  7. Getson JM, Whittington AG (2007) Liquid and magma viscosity in the anorthite–forsterite–diopside–quartz system and implications for the viscosity-temperature paths of cooling magmas. J Geophys Res 112, B10203. doi: 10.1029/2006JB004812 CrossRefGoogle Scholar
  8. Gottsmann J, Harris AJL, Dingwell DB (2004) Thermal history of Hawaiian pāhoehoe lava crusts at the glass transition: implications for flow rheology and flow emplacement. Earth Planet Sci Lett 228:343–353CrossRefGoogle Scholar
  9. Gurioli L, Colo’ L, Bollasina AJ, Harris AJL, Whittington A, Ripepe M (2014) Dynamics of Strombolian explosions: inferences from field and laboratory studies of erupted bombs from Stromboli volcano. J Geophys Res. doi: 10.1002/2013JB010355 Google Scholar
  10. Harris AJL, Allen JS III (2008) One-, two- and three-phase viscosity treatments for basaltic lava flows. J Geophys Res 113, B09212Google Scholar
  11. Harris AJL, Rowland SK (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63:20–44CrossRefGoogle Scholar
  12. Harris AJL, Rowland SK (2014) FLOWGO 2012: an updated framework for thermo-rheological simulations of channel-contained lava. AGU Monograph Hawaiian Volcanism, from source to surface, in pressGoogle Scholar
  13. Harris AJL, Bailey J, Calvari S, Dehn J (2005) Heat loss measured at a lava channel and its implications for down-channel cooling and rheology. Geol Soc Am Spec Pap 396:125–146Google Scholar
  14. Harris AJL, Favalli M, Mazzarini F, Hamilton CW (2009) Construction dynamics of a lava channel. Bull Volcanol 71:459–474CrossRefGoogle Scholar
  15. Heath TL (1897) The works of Archimedes. Cambridge University PressGoogle Scholar
  16. Helz RT, Thornber CR (1987) Geothermometry of Kilauea Iki lava lake, Hawaii. Bull Volcanol 49:651–668CrossRefGoogle Scholar
  17. Helz RT, Heliker C, Hon K, Mangan M (2003) Thermal efficiency of lava tubes in the Pu’u ‘O’o-Kupaianaha eruption. In: Heliker C, Swanson DA, Takahashi TJ (eds) The Pu’u ‘O’o-Kupaianaha eruption of Kilauea volcano, Hawai’i: the first 20 years. US Geol Survey Prof Pap 1676:105–120Google Scholar
  18. Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106:351–370Google Scholar
  19. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462CrossRefGoogle Scholar
  20. Hulme G (1974) The interpretation of lava flow morphology. Geophys J R Astron Soc 39:361–383CrossRefGoogle Scholar
  21. Jaggar TA (1920) Seismometric investigation of the Hawaiian lava column. Bull Seismol Soc Am 10:155–275Google Scholar
  22. Lange RA (1994) The effect of H2O, CO2 and F on the density and viscosity of silicate melts. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Mineral Soc Am Rev Mineral 30Google Scholar
  23. Lipman PW, Banks NG (1984) ‘A’ā flow dynamics, Mauna Loa 1984. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii, volume 2. US Geol Survey Prof Pap 1350:1527–1567Google Scholar
  24. Llewellin EW, Manga M (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143:205–217CrossRefGoogle Scholar
  25. Macdonald GA (1953) Pâhoehoe, ‘a’â, and block lava. Am J Sci 251:169–191CrossRefGoogle Scholar
  26. Moore HJ (1987) Preliminary estimates of the rheological properties of 1984 Mauna Loa lava. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii, volume 2. US Geol Survey Prof Pap 1350:1569–1588Google Scholar
  27. Osmond DI, Griffiths RW (2001) The static shape of yield strength fluids slowly emplaced on slopes. J Geophys Res 106:16,241–16,250CrossRefGoogle Scholar
  28. Peterson DW, Tilling RI (1980) Transition of basaltic lava from pahoehoe to ’a’a, Kilauea volcano, Hawaii: field observations and key factors. J Volcanol Geotherm Res 7(3/4):271–293CrossRefGoogle Scholar
  29. Peterson DW, Christiansen RL, Duffield WA, Holcomb RT, Tilling RI (1976) Recent activity of Kilauea Volcano, Hawaii. Proceedings of the symposium on “Andean and Antarctic volcanology problems” (Santiago, Chile, September 1974), pp 646–656. Edited by O. Gonzales Ferran, executive secretary of the organizing committeeGoogle Scholar
  30. Phan-Thien N, Pham DC (1997) Differential multiphase models for polydispersed suspensions and particulate solids. J Non-Newtonian Fluid Mech 72:305–318CrossRefGoogle Scholar
  31. Pinkerton H, Sparks RSJ (1978) Field measurements of the rheology of lava. Nature 276:383–385CrossRefGoogle Scholar
  32. Pinkerton H, James M, Jones A (2002) Surface temperature measurements of active lava flows on Kilauea volcano, Hawai’i. J Volcanol Geotherm Res 113:159–176CrossRefGoogle Scholar
  33. Pinkerton H, Stevenson RJ (1992) Methods of determining the rheological properties of magmas at sub-liquidus temperatures. J Volcanol Geotherm Res 53(1–4):47–66, doi: 10.1016/0377-0273(92)90073-M
  34. Polacci M, Cashman KV, Kauahikaua JP (1999) Textural characterization of the pāhoehoe-‘a’ā transition in Hawaiian basalt. Bull Volcanol 60:595–609CrossRefGoogle Scholar
  35. Richter DH, Eaton JP, Murata KJ, Ault WU, Krivoy HL (1970) Chronological narrative of the 1959–60 eruption of Kilauea Volcano. Hawaii US Geol Surv Prof Pap 537-EGoogle Scholar
  36. Riker JM, Cashman KV, Kauahikaua JP, Montierth CM (2009) The length of channelized lava flows: insight from the 1859 eruption of Mauna Loa Volcano, Hawaii. J Volcanol Geotherm Res 183:139–156CrossRefGoogle Scholar
  37. Roscoe R (1952) The viscosity of suspensions of rigid spheres. Br J Appl Phys 3:267–269CrossRefGoogle Scholar
  38. Rowland SK, Walker GPL (1990) Pahoehoe and aa in Hawaii: volumetric flow rate controls the lava structure. Bull Volcanol 52:615–628CrossRefGoogle Scholar
  39. Shaw HR (1972) Viscosities of magmatic silicate liquids: an empirical method of prediction. Am J Sci 272:870–893CrossRefGoogle Scholar
  40. Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190:271–289CrossRefGoogle Scholar
  41. Soule SA, Cashman KV (2005) Shear rate dependence of the pahoehoe to ‘a‘a transition: analog experiments. Geol 33(5): 361–364Google Scholar
  42. Soule SA, Cashman KV, Kauahikaua JP (2004) Examining flow emplacement through the surface morphology of three rapidly emplaced, solidified lava flows, Kilauea Volcano, Hawaii. Bull Volcanol 66:1–14CrossRefGoogle Scholar
  43. Sparks RSJ, Pinkerton H (1978) Effect of degassing on rheology of basaltic lava. Nature 276:385–386CrossRefGoogle Scholar
  44. Swanson DA, Duffield WA, Jackson DB, Peterson DW (1979) Chronological narrative of the 1969–71 Mauna Ulu eruption of Kilauea Volcano, Hawaii. US Geol Survey Prof Pap 1056Google Scholar
  45. Tilling RI, Christiansen RL, Duffield WA, Endo ET, Holcomb RT, Koyanagi RY, Peterson DW, Unger JD (1987) The 1972–1974 Mauna Ulu eruption, Kilauea Volcano: an example of quasi-steady-state magma transfer. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii, volume 1. US Geol Survey Prof Pap 1350:405–470Google Scholar
  46. Vogel DH (1921) Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Zeit Phys Chem 22:645–646Google Scholar
  47. Wadge G, Lopes RMC (1991) The lobes of lava flows on Earth and Olympus Mons, Mars. Bull Volcanol 54:10–24CrossRefGoogle Scholar
  48. Whittington AG, Hellwig BM, Behrens H, Joachim B, Stechern A, Vetere F (2009) The viscosity of hydrous dacitic liquids: implications for the rheology of evolving silicic magmas. Bull Volcanol 71:185–199CrossRefGoogle Scholar
  49. Wolfe EW, Neal CA, Banks NG, Duggan TJ (1988) Geologic observations and chronology of eruptive events. In: The Puu Oo eruption of Kilauea Volcano, Hawaii: episodes 1 through 20, January 3, 1983, through June 8, 1984. U.S. Geol Survey Prof Pap 1463, pp 1–97Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bénédicte Robert
    • 1
    • 2
    • 3
  • Andrew Harris
    • 1
    • 2
    • 3
    • 4
    Email author
  • Lucia Gurioli
    • 1
    • 2
    • 3
    • 4
  • Etienne Médard
    • 1
    • 2
    • 3
    • 4
  • Alexander Sehlke
    • 5
  • Alan Whittington
    • 5
  1. 1.Laboratoire Magmas et VolcansUniversité Blaise PascalClermont-FerrandFrance
  2. 2.CNRS, UMR6524, LMVClermont-FerrandFrance
  3. 3.IRD, R163, LMVClermont-FerrandFrance
  4. 4.Observatoire de Physique du Globe de Clermont Ferrand (OPGC)Clermont-FerrandFrance
  5. 5.Department of Geological SciencesUniversity of Missouri, ColumbiaColumbiaUSA

Personalised recommendations