Late Quaternary history of the Vakinankaratra volcanic field (central Madagascar): insights from luminescence dating of phreatomagmatic eruption deposits

  • Daniel Rufer
  • Frank Preusser
  • Guido SchreursEmail author
  • Edwin Gnos
  • Alfons Berger
Research Article


The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe–Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109 ± 15 and 90 ± 11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58 ± 4 and 47 ± 7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68 ± 7 and 65 ± 8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32 ± 3 and 19 ± 2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.


Luminescence dating Quaternary volcanism Geochronology Madagascar Vakinankaratra Phreatomagmatic deposits Ankaratra 



Financial support for this project was provided by the Swiss National Foundation (SNF), Project numbers 200020-105453/1, 200020-118023/1, and 206021–117374, and the Berne University Research Foundation. Sönke Szidat is thanked for high-resolution gamma spectrometry measurements, Marco Herwegh for introducing DR to the SEM, and Jörg Giese, Sally Lowick, Inga Schindelwig, Damian Steffen, Michèle Suchy, and Mareike Trauerstein for helpful discussions and comments. We acknowledge helpful comments from two anonymous reviewers and thank executive editor James D. L. White for additional critical comments which helped to improve the manuscript.


  1. Aitken MJ (1985) Thermoluminescence Dating. Academic, LondonGoogle Scholar
  2. Bardintzeff JM, Liégois JP, Bonin B, Bellon H, Rasamimanana G (2010) Madagascar volcanic provinces linked to the Gondwana break-up: geochemical and isotopic evidences for contrasting mantle sources. Gondwana Res 18:295–314CrossRefGoogle Scholar
  3. Bassinet C, Mercier N, Miallier D, Pilleyre T, Sanzelle S, Valladas H (2006) Thermoluminescence of heated quartz grains: intercomparisons between SAR and multiple-aliquot additive dose techniques. Radiat Meas 41:803–808CrossRefGoogle Scholar
  4. Berger A, Gnos E, Rakotondrazafy M, Rufer D, Schreurs G (2008) Geological Map west of Antsirabe (1: 40,000)Google Scholar
  5. Bertil D, Regnoult JM (1998) Seismotectonics of Madagascar. Tectonophysics 294:57–74CrossRefGoogle Scholar
  6. Besairie H (1964) Carte Géologique de Madagascar. 1:1000 000. Service Géologique de Madagascar, AntananarivoGoogle Scholar
  7. Besairie H, Besairie H (1969) Carte Géologique. Feuille 5. 1:500 000. Service Géologique de Madagascar, AntananarivoGoogle Scholar
  8. Bonde A, Murray A, Friedrich WL (2001) Santorini: luminescence dating of a volcanic province using quartz. Quat Sci Rev 20:789–793CrossRefGoogle Scholar
  9. Büttner R, Zimanowski B (1998) Physics of thermohydraulic explosions. Phys Rev E 57:5726–5729CrossRefGoogle Scholar
  10. Duller GAT (1992) Luminescence chronology of raised marine terraces, south-west North Island, New Zealand. Dissertation, University Of Wales, Aberystwyth, p 147Google Scholar
  11. Fattahi M, Stokes S (2000) Extending the time range of luminescence dating using red TL (RTL) from volcanic quartz. Radiat Meas 32:479–485CrossRefGoogle Scholar
  12. Fattahi M, Stokes S (2003) Dating volcanic and related sediments by luminescence methods: a review. Earth Sci Rev 62:229–264CrossRefGoogle Scholar
  13. Faure G (1986) Principles of isotope geology, 2nd edn. John Wiley & Sons, New YorkGoogle Scholar
  14. Gaar D, Lowick SE, Preusser F (2014) Performance of different luminescence approaches for the dating of known-age glaciofluvial deposits from northern Switzerland. Geochronometria 41:65–80CrossRefGoogle Scholar
  15. Ganzawa Y, Furukawa H, Hashimoto T, Sanzelle S, Miallier D, Pilleyre T (2005) Single grains dating of volcanic quartz from pyroclastic flows using Red TL. Radiat Meas 39:479–487CrossRefGoogle Scholar
  16. Gasse F, Van Campo E (1998) A 40,000-yr pollen and diatom record from Lake Tritrivakely, Madagascar, in the southern tropics. Quat Res 49:299–311CrossRefGoogle Scholar
  17. Gasse F, Van Campo E (2001) Late Quaternary environmental changes from a pollen and diatom record in the southern tropics (Lake Tritrivakely, Madagascar). Palaeogeogr Palaeoclimatol Palaeoecol 167:287–308CrossRefGoogle Scholar
  18. Gasse F, Cortijo E, Disnar JR, Ferry L, Gibert E, Kissel C, Laggoundefarge F, Lallierverges E, Miskovsky JC, Ratsimbazafy B, Ranaivo F, Robison L, Tucholka P, Saos JL, Siffedine A, Taieb M, Van Campo E, Williamson D (1994) A 36-ka environmental record in the southern tropics—Lake Tritrivakely (Madagascar). Comptes Rendus de L’academie des Sciences—Serie II 318:1513–1519Google Scholar
  19. Grimison NL, Chen WP (1988) Earthquakes in the Davie Ridge-Madagascar Region and the Southern Nubian-Somalian Plate Boundary. J Geophys Res—Solid 93:10439–10450CrossRefGoogle Scholar
  20. Huntley DJ, Baril MR (1997) The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15:11–14Google Scholar
  21. Huntley DJ, Lamothe M (2001) Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Can J Earth Sci 38:1093–1106CrossRefGoogle Scholar
  22. Israelson OW, West FL (1922) Water holding capacity of irrigated soils. Utah State Agric Exp Stat Bull 183:1–24Google Scholar
  23. Kars RH, Wallinga J, Cohen KM (2008) A new approach towards anomalous fading correction for feldspar IRSL dating—tests on samples in field saturation. Radiat Meas 43:786–790CrossRefGoogle Scholar
  24. Kulig G (2005) Erstellung einer Auswertesoftware zur Alterbestimmung mittels Lumineszensverfahren unter spezieller Berücksichtigung des Einflusses radioaktiver Ungleichgewichte in der 238U-Zerfallsreihe. Unpublished Bsc Dissertation, Technical University Bergakademie FreibergGoogle Scholar
  25. Kusky TM, Toraman E, Raharimahefa T (2007) The Great Rift Valley of Madagascar: an extension of the Africa-Somali diffusive plate boundary? Gondwana Res 11:577–579CrossRefGoogle Scholar
  26. Kusky TM, Toraman E, Raharimahefa T, Rasoazanamparany C (2010) Active tectonics of the Alaotra-Ankay graben system, Madagascar: possible extension of Somalian-African diffusive plate boundary? Gondwana Res 18:274–294CrossRefGoogle Scholar
  27. Lacroix A (1921–1923) La minéralogie de Madagascar. ParisGoogle Scholar
  28. Lamothe M, Auclair M, Hamzaoui C, Huot S (2003) Towards a prediction of long-term anomalous fading of feldspar IRSL. Radiat Meas 37:493–498CrossRefGoogle Scholar
  29. Laville E, Piqué A, Plaziat JC, Gioan P, Rakotomalala R, Ravololonirina Y, Tidahy E (1998) Le fosse meridien d’Ankay-Alaotra, témoin d’une extension crustale récente et actuelle à Madagascar. Bull Soc géol France 169:775–788Google Scholar
  30. Lowick SE, Trauerstein M, Preusser F (2012) Testing the application of post IR-IRSL dating to fine grain waterlain sediments. Quat Geochronol 8:33–40CrossRefGoogle Scholar
  31. Mejdahl V (1985) Thermoluminescence dating of partially bleached sediments. Nucl Tracks Radiat Meas 10:711–715CrossRefGoogle Scholar
  32. Mottet G. (1980a) L’Ankaratra et ses bordures (Madagascar): Recherches de Géomorphologie volcanique—Tome I, Le massif de l’Ankaratra. Dissertation, Université de LyonGoogle Scholar
  33. Mottet G. (1980b): L’Ankaratra et ses bordures (Madagascar): Recherches de Géomorphologie volcanique. - Tome II, Les bordures et le volcanisme Quaternaire: Le volcanisme du massif des Vavavato, Le Vakinankaratra, Le Massif de l’Itasy. Dissertation, Université De LyonGoogle Scholar
  34. Mougenot D, Recq M, Virlogeux P, Lepvrier C (1986) Seaward extension of the East African Rift. Nature 321:599–603CrossRefGoogle Scholar
  35. Ollier CD (1974) Phreatic eruptions and maars. In: Civetta L et al (eds) Physical Volcanology. Elsevier, New YorkGoogle Scholar
  36. Petit M (1998) Présentation physique de la grande île Madagascar. FTM—Institut Géographique Et Hydrographique National, AntananarivoGoogle Scholar
  37. Piqué A, Laville E, Chotin P, Chorowicz J, Rakotondraompiana S, Thouin C (1999) Neogene and present extension in Madagascar: structural and geophysical data. J Afr Earth Sci 28:975–983CrossRefGoogle Scholar
  38. Preusser F (1999) Lumineszenzdatierungen fluviatiler Sedimente - Fallbeispiele aus der Schweiz und Norddeutschland. Kölner Forum für Geol und Paläontol 3:63Google Scholar
  39. Preusser F, Blei A, Graf HR, Schlüchter C (2007) Luminescence dating of Würmian (Weichselian) proglacial sediments from Switzerland: methodological aspects and stratigraphical conclusions. Boreas 36:130–142CrossRefGoogle Scholar
  40. Preusser F, Degering D, Fuchs M, Hilgers A, Kadereit A, Klasen N, Krbetschek M, Richter D, Spencer JQG (2008) Luminescence dating: basics, methods and applications. E&G Quat Sci J 57:95–149Google Scholar
  41. Preusser F, Rufer D, Schreurs G (2011) Direct dating of Quaternary phreatic maar eruptions by luminescence methods. Geology 39:1135–1138CrossRefGoogle Scholar
  42. Randriantsoa MM (2001) Rôle de la matière organique dans la fertilité phosphorique d’un sol ferrallitique des Hautes Terres Malgaches. DEA de l’institut national polytechnique de Lorraine. Cirad-Tafa, 26pGoogle Scholar
  43. Rasamimanana G, Bardintzeff JM, Rasendrasoa J, Bellon H, Thouin C, Gioan P, Piqué A (1998) Les episodes magmatiques du Sud-Ouest de Madagascar (basin de Morondava), marqueurs des phénomènes de rifting crétacé et néogène. CR Acad Sci Paris 326:685–691CrossRefGoogle Scholar
  44. Rufer D, Gnos E, Mettier F, Preusser F, Schreurs G (2012) Proposing new approaches for dating young volcanic eruptions by luminescence methods. Geochronometria 39:48–56CrossRefGoogle Scholar
  45. Schmincke HU (1977) Phreatomagmatische Phasen in Quartären Vulkanen der Osteifel. Geol Jahrb A39:3–45Google Scholar
  46. Sheridan MF, Wohletz KH (1981) Hydrovolcanic explosions: the systematics of water-pyroclast equilibration. Science 212:1387–1389CrossRefGoogle Scholar
  47. Sheridan MF, Wohletz KH (1983) Hydrovolcanism: basic considerations and review. J Volcanol Geotherm Res 17:1–29CrossRefGoogle Scholar
  48. Sibree RJ (1891) The volcanic lake of Tritriva, Central Madagascar. Proc Royal Geogr Soc Monthly Rec Geogr 13:477–483CrossRefGoogle Scholar
  49. Sifeddine A, Laggoundefarge F, Lallierverges E, Disnar JR, Williamson D, Gasse F, Gibert E (1995) La sedimentation organique lacustre en zone tropicale sud au cours des 36 000 dernières années (Lac Tritrivakely, Madagascar). CR Acad Sci Paris 321:385–391Google Scholar
  50. Steffen D, Preusser F, Schlunegger F (2009) OSL quartz age underestimation due to unstable signal components. Quat Geochronol 4:353–362CrossRefGoogle Scholar
  51. Tsukamoto S, Murray AS, Huot S, Watanuki T, Denby PM, Bøtter-Jensen L (2007) Luminescence property of volcanic quartz and the use of red isothermal TL for dating tephras. Radiat Meas 42:190–197CrossRefGoogle Scholar
  52. Tucker RD, Moine B (2012) Discussion of: Petrogenesis and Nd-, Pb-, Sr-isotope geochemistry of the Cenozoic olivine melilites and olivine nephelinites (“Ankaratrites”) in Madagascar. Lithos 140(141):255–256CrossRefGoogle Scholar
  53. Wallinga J, Murray A, Wintle A (2000) The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar. Radiat Meas 32:529–533CrossRefGoogle Scholar
  54. Wallinga J, Bos AJJ, Dorenbos P, Murray AS, Schokker J (2007) A test case for anomalous fading correction in IRSL dating. Quat Geochron 2:216–221CrossRefGoogle Scholar
  55. White JDL (1996) Impure coolants and interaction dynamics of phreatomagmatic eruptions. J Volcanol Geotherm Res 74:155–170CrossRefGoogle Scholar
  56. White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29CrossRefGoogle Scholar
  57. Williamson D, Jelinowska A, Kissel C, Tucholka P, Gibert E, Gasse F, Massault M, Taieb M, Van Campo E, Wieckowski K (1998) Mineral-magnetic proxies of erosion/oxidation cycles in tropical maar-lake sediments (Lake Tritrivakely, Madagascar): paleoenvironmental implications. Earth Planet Sci Lett 155:205–219CrossRefGoogle Scholar
  58. Wintle AG (1973) Anomalous fading of thermoluminescence in mineral samples. Nature 245:143–144CrossRefGoogle Scholar
  59. Wohletz KH, Heiken G (1992) Volcanology and Geothermal Energy. University of California Press, BerkeleyGoogle Scholar
  60. Wohletz KH, Sheridan MF (1983) Hydrovolcanic explosions II: evolution of basaltic tuff rings and tuff cones. Am J Sci 283:385–413CrossRefGoogle Scholar
  61. Woolley AR (2001) Alkaline rocks and carbonatites of the world, Part 3: Africa. The Geological Society Publishing House, Bath, UKGoogle Scholar
  62. Zebrowski C, Ratsimbazafy C (1979) Carte pédologique de Madagascar à 1:100,000—Notice Explicative No. 83Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniel Rufer
    • 1
  • Frank Preusser
    • 2
  • Guido Schreurs
    • 1
    Email author
  • Edwin Gnos
    • 3
  • Alfons Berger
    • 1
  1. 1.Institute of Geological Sciences, Baltzerstrasse 1 + 3University of BernBernSwitzerland
  2. 2.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  3. 3.Muséum d’histoire naturelle de GenèveGenève 6Switzerland

Personalised recommendations