Bulletin of Volcanology

, 76:814 | Cite as

Coupling eruption and tsunami records: the Krakatau 1883 case study, Indonesia

  • Raphaël ParisEmail author
  • Patrick Wassmer
  • Franck Lavigne
  • Alexander Belousov
  • Marina Belousova
  • Yan Iskandarsyah
  • Mhammed Benbakkar
  • Budianto Ontowirjo
  • Nelly Mazzoni
Research Article


The well-documented 1883 eruption of Krakatau volcano (Indonesia) offers an opportunity to couple the eruption’s history with the tsunami record. The aim of this paper is not to re-analyse the scenario for the 1883 eruption but to demonstrate that the study of tsunami deposits provides information for reconstructing past eruptions. Indeed, though the characteristics of volcanogenic tsunami deposits are similar to those of other tsunami deposits, they may include juvenile material (e.g. fresh pumice) or be interbedded with distal pyroclastic deposits (ash fall, surges), due to their simultaneity with the eruption. Five kinds of sedimentary and volcanic facies related to the 1883 events were identified along the coasts of Java and Sumatra: (1) bioclastic tsunami sands and (2) pumiceous tsunami sands, deposited respectively before and during the Plinian phase (26–27 August); (3) rounded pumice lapilli reworked by tsunami; (4) pumiceous ash fall deposits and (5) pyroclastic surge deposits (only in Sumatra). The stratigraphic record on the coasts of Java and Sumatra, which agrees particularly well with observations of the 1883 events, is tentatively linked to the proximal stratigraphy of the eruption.


Volcanic tsunami Tsunami deposits 1883 Krakatau eruption Pyroclastic fall Pyroclastic surge Indonesia 



This work was funded by French ANR (Agence Nationale de la Recherche) program “Young Scientist” 2008–project VITESSS (Volcano-Induced Tsunamis: Sedimentary Signature and numerical Simulation) whose leader was Raphaël Paris. The authors are also grateful to Jean-Marc Hénot (SEM, Clermont-Ferrand), Marc Diraison and Martine Trautmann (AMS and grain size analysis, Strasbourg), Claudia Maxcia Setjaatmadja, Eko Yulianto and Brian Atwater (for giving unpublished manuscript on coral boulders), and David Dublanchet (for building the kml files). The authors thank Scott Bryan, Adam Switzer and an anonymous reviewer for their careful reviews, as well as Steve Self and James White. This is Laboratory of Excellence ClerVolc contribution n° 90.

Supplementary material

445_2014_814_MOESM1_ESM.docx (22 kb)
Table S1 (DOCX 21 kb)
445_2014_814_MOESM2_ESM.docx (20 kb)
Table S2 (DOCX 19 kb)


  1. Allen SR, Cas RAF (2001) Transport of pyroclastic flows across the sea during the explosive, rhyolitic eruption of the Kos Plateau Tuff, Greece. Bull Volcanol 62:441–456CrossRefGoogle Scholar
  2. Begét JE (2000) Volcanic tsunamis. In: Sigurdsson H, Houghton B, Mc Nutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, New York, pp 1005–1013Google Scholar
  3. Blong RJ, McKee CO (1995) The Rabaul eruption 1994—destruction of a town. Natural Hazards Research Center, Macquarie University, Australia, 52 pGoogle Scholar
  4. Bourgeois J (2009) Geologic effects and records of tsunamis. In: Robinson AR, Bernard EN (eds.) The sea, vol. 15: tsunamis. Harvard: Harvard University Press. pp 53–91Google Scholar
  5. Bronto S (1990) Gunung Krakatau, Berita Berkala Vulkanologi,. Edisi Khusus No.133, Direktorat Vulkanologi, 5h, unpublished.Google Scholar
  6. Cailleux A, Tricart J (1959) Contribution à l’étude des sables et des galets. CDU, Paris, 376 pGoogle Scholar
  7. Camus G, Vincent PM (1983) Discussion of a new hypothesis for the Krakatau volcanic eruption in 1883. J Volcanol Geotherm Res 19:167–173CrossRefGoogle Scholar
  8. Camus G, Gourgaud A, Vincent PM (1987) Petrologic evolution of Krakatau (Indonesia): implications for a future activity. J Volcanol Geotherm Res 33:299–316CrossRefGoogle Scholar
  9. Carey S, Sigurdsson H, Mandeville C, Bronto S (1996) Pyroclastic flows and surges over water: an example from the 1883 Krakatau eruption. Bull Volcanol 57:493–511CrossRefGoogle Scholar
  10. Carey S, Morelli D, Sigurdsson H, Bronto S (2001) Tsunami deposits from major explosive eruptions: an example from the 1883 eruption of Krakatau. Geology 29(4):347–350CrossRefGoogle Scholar
  11. Chagué-Goff C (2010) Chemical signature of palaeotsunamis: a forgotten proxy? Mar Geol 271:67–71CrossRefGoogle Scholar
  12. Choi BH, Pelinovsky E, Kim KO, Lee JS (2003) Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption. Nat Hazards Earth Syst Sci 3:321–332CrossRefGoogle Scholar
  13. Cuven S, Paris R, Falvard S, Miot-Noirault E, Benbakkar M, Schneider JL, Billy I (2013) High-resolution analysis of a tsunami deposit: case-study from the 1755 Lisbon tsunami in south-western Spain. Mar Geol 337:98–111CrossRefGoogle Scholar
  14. Dawson AG (1996) The geological significance of tsunamis. Zeitschrift für Geomorphologie Suppl Band 102:199–210Google Scholar
  15. Dawson AG, Stewart I (2007) Tsunami deposits in the geological record. Sediment Geol 200:166–183CrossRefGoogle Scholar
  16. de Lange WP, Moon VG (2007) Tsunami washover deposits, Tawharanui, New Zealand. Sediment Geol 200:232–247CrossRefGoogle Scholar
  17. Ewing M, Press F (1955) Tide-gage disturbances from the great eruption of Krakatoa. Trans Am Geophys Union 36(1):53–60CrossRefGoogle Scholar
  18. Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, Berlin, 472 pCrossRefGoogle Scholar
  19. Francis PW (1985) The origin of the 1883 Krakatau tsunamis. J Volcanol Geotherm Res 25:349–363CrossRefGoogle Scholar
  20. Freundt A, Strauch W, Kutterolf S, Schmincke HU (2007) Volcanogenic tsunamis in lakes: examples from Nicaragua and general implications. Pure Appl Geophys 164:527–545CrossRefGoogle Scholar
  21. Giachetti T, Paris R, Kelfoun K, Ontowirjo B (2012) Tsunami hazard related to a flank collapse of Anak Krakatau volcano, Sunda Strait, Indonesia. Geological Society, London, Special Publication 361:79–89Google Scholar
  22. Goff JR, Chagué-Goff C, Nichol SL, Jaffe B, Dominey-Howes D (2012) Progress in palaeotsunami research. Sediment Geol 243–244:70–88CrossRefGoogle Scholar
  23. Hudspith VA, Scott AC, Wilson CJN, Collinson ME (2010) Charring of woods by volcanic processes: an example from the Taupo ignimbrite, New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 291:40–51CrossRefGoogle Scholar
  24. Keating BH, Helsley CE, Wanink M, Walker D (2011) Tsunami deposit research: fidelity of the tsunami record, ephemeral nature, tsunami deposits characteristics, remobilization of sediments by later waves, and boulder movement. In: Mörner NA (Ed.) The tsunami threat—Research and Technology. InTech, 714 pGoogle Scholar
  25. Latter JN (1981) Tsunamis of volcanic origin: summary of causes with particular references to Krakatoa, 1883. Bull Volcanol 44(3):467–490CrossRefGoogle Scholar
  26. Maeno F, Imamura F (2011) Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia. J Geophys Res 116, B09205Google Scholar
  27. Mandeville CW, Carey S, Sigurdsson H, King J (1994) Paleomagnetic evidence of high-temperature emplacement of the 1883 subaqueous pyroclastic flows from Krakatau volcano, Indonesia. J Geophys Res 99:9487–9504CrossRefGoogle Scholar
  28. Mandeville CW, Carey S, Sigurdsson H (1996a) Magma mixing, fractional crystallization and volatile degassing during the 1883 eruption of Krakatau volcano, Indonesia. J Volcanol Geotherm Res 74:243–274CrossRefGoogle Scholar
  29. Mandeville CW, Carey S, Sigurdsson H (1996b) Sedimentology of the Krakatau 1883 submarine pyroclastic deposits. Bull Volcanol 57:512–529CrossRefGoogle Scholar
  30. Minoura K, Imamura F, Kuran U, Nakamura T, Papadopoulos GA, Takahashi T, Yalciner AC (2000) Discovery of Minoan tsunami deposits. Geology 28(1):59–62CrossRefGoogle Scholar
  31. Nishimura Y, Miyaji N (1995) Tsunami deposits from the 1993 Southwest Hokkaido earthquake and the 1640 Hokkaido Komagatake eruption, Northern Japan. Pure Appl Geophys 144:719–733CrossRefGoogle Scholar
  32. Nishimura Y, Nakagawa M, Kuduon J, Wukawa J (2005) Timing and scale of tsunamis caused by the 1994 Rabaul eruption, East New Britain, Papua New Guinea. In: Satake K (ed) Tsunamis: case studies and recent developments. Springer, New York, pp 43–56CrossRefGoogle Scholar
  33. Nomanbhoy N, Satake K (1995) Generation mechanism of tsunamis from the 1883 Krakatau eruption. Geophys Res Lett 22(4):509–512CrossRefGoogle Scholar
  34. Ongkosongo OSR (1983) Coastal geomorphology of Cilegon-Labuhan, West Java, with special emphasis on the remnants of the 1883 Krakatau tsunamic activity. Symposium on 100th year Development of Krakatau and its surroundings, August 23–27, 1983, Jakarta, IndonesiaGoogle Scholar
  35. Paris R, Lavigne F, Wassmer P, Sartohadi J (2007) Coastal sedimentation associated with the December 26, 2004 in Lhok Nga, west Banda Aceh (Sumatra, Indonesia). Mar Geol 238:93–106CrossRefGoogle Scholar
  36. Paris R, Switzer AD, Belousova M, Belousov A, Ontowirjo B, Whelley PL, Ulvrova M (2013) Volcanic tsunami: a review of source mechanisms, past events and hazards in Southeast Asia (Indonesia, Philippines, Papua New Guinea). Natural Hazards. doi: 10.1007/s11069-013-0822-8 Google Scholar
  37. Pelinovsky E, Choi BH, Stromkov A, Didenkulova I, Kim HS (2005) Analysis of tide-gauge records of the 1883 Krakatau tsunami. In: Satake K (ed) Tsunamis: case studies and recent developments. Springer, New York, pp 57–78CrossRefGoogle Scholar
  38. Schmincke HU, Fisher RV, Waters AC (1973) Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany. Sedimentology 20:553–574CrossRefGoogle Scholar
  39. Scott AC, Glasspool IJ (2005) Charcoal reflectance as a proxy for the emplacement temperature of pyroclastic flow deposits. Geology 33(7):589–592CrossRefGoogle Scholar
  40. Self S (1992) Krakatau revisited: the course of events and interpretation of the 1883 eruption. Geo Journal 282:109–121Google Scholar
  41. Self S, Rampino MR (1981) The 1883 eruption of Krakatau. Nature 294:699–704CrossRefGoogle Scholar
  42. Setjaatmadja CM (2007) Boulder deposition associated with the 1883 Krakatau tsunami in Java and Sumatra. Unpublished M.S. Thesis, Asian Institute of Technology, BangkokGoogle Scholar
  43. Sewell DA (2001) Earth, air, fire and water. An elemental analysis of the Minoan eruption of Santorini volcano in the Late Bronze Age. Unpublished PhD Thesis, University of Reading, 427 pGoogle Scholar
  44. Simkin T, Fiske RS (1983) Krakatau 1883: the volcanic eruption and its effects. Smithsonian Institution Press, Washington DC, 464 pGoogle Scholar
  45. Stehn CE (1929) The geology and volcanism of the Krakatau group. Proceedings of the Fourth Pacific Science Congress, Batavia, pp 1–55Google Scholar
  46. Symons G (1888) The eruption of Krakatau and subsequent phenomena: reports of the Krakatau Committee of the Royal Society. Trubner, LondonGoogle Scholar
  47. Terry JP, Lau AYA, Etienne S (2013) Reef-platform coral boulders—evidence for high-energy marine inundation events on tropical coastlines. Springer Briefs in Earth Science, 102 pGoogle Scholar
  48. Umbgrove JHF (1947) Coral reefs of the East Indies. Bull Geol Soc Am 58:729–778CrossRefGoogle Scholar
  49. Van den Berg GD, Boer W, de Haas H, van Weering TCE, van Wijhe R (2003) Shallow marine tsunami deposits in Teluk Banten (NW Java, Indonesia), generated by the 1883 Krakatau eruption. Mar Geol 197:13–34CrossRefGoogle Scholar
  50. Verbeek RM (1886) Krakatau. Batavia, Imprimerie de l’Etat, 567 pGoogle Scholar
  51. Verstappen HT (1956) Landscape development of the Udjung Kulon Game Reserve. Penggemar Alam 36:37–51Google Scholar
  52. Wassmer P, Schneider JL, Fonfrège AV, Lavigne F, Paris R, Gomez C (2010) Use of anisotropy of magnetic susceptibility (AMS) in the study of tsunami deposits: application to the 2004 deposits on the eastern coast of Banda Aceh, North Sumatra, Indonesia. Mar Geol 275:255–272CrossRefGoogle Scholar
  53. Waythomas CF, Neal CA (1998) Tsunami generation by pyroclastic flow during the 3500-year BP caldera-forming eruption of Aniakchak volcano, Alaska. Bull Volcanol 60:110–124CrossRefGoogle Scholar
  54. Williams H (1941) Calderas and their origin. Univ Calif Publ Geol Sci 25:239–346Google Scholar
  55. Wohletz KH, Sheridan MF (1979) A model of pyroclastic surge. Geol Soc Amer Spec Pap 180:177–193CrossRefGoogle Scholar
  56. Yokoyama I (1981) A geophysical interpretation of the 1883 Krakatau eruption. J Volcanol Geotherm Res 9:359–378CrossRefGoogle Scholar
  57. Yokoyama I (1987) A scenario of the 1883 Krakatau tsunami. J Volcanol Geotherm Res 34:123–132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Raphaël Paris
    • 1
    • 2
    Email author
  • Patrick Wassmer
    • 3
    • 4
  • Franck Lavigne
    • 3
    • 5
  • Alexander Belousov
    • 6
  • Marina Belousova
    • 6
  • Yan Iskandarsyah
    • 7
    • 8
  • Mhammed Benbakkar
    • 1
    • 2
  • Budianto Ontowirjo
    • 11
  • Nelly Mazzoni
    • 9
    • 10
  1. 1.Clermont UniversitéUniversité Blaise PascalClermont-FerrandFrance
  2. 2.Magmas et VolcansCNRS, UMR 6524Clermont-FerrandFrance
  3. 3.UMR 8591, Laboratoire de Géographie PhysiqueCNRSMeudonFrance
  4. 4.Faculté de Géographie et d’AménagementUniversité de StrasbourgStrasbourgFrance
  5. 5.Université Paris 1 Panthéon-SorbonnePRES HESAMMeudonFrance
  6. 6.Institute of Volcanology and SeismologyPetropavlosk-KamchatskyRussia
  7. 7.Laboratorium Geologi Lingkungan dan Hidrogeologi, Fakultas Teknik GeologiUniversitas Padjadjaran (UNPAD)BandungIndonesia
  8. 8.Laboratoire Image, Ville, Environnement (LIVE), UMR 7362 CNRSUniversité de StrasbourgStrasbourgFrance
  9. 9.Clermont Université, GEOLABUniversité Blaise PascalClermont-FerrandFrance
  10. 10.GEOLABUMR 6042, CNRSClermont-FerrandFrance
  11. 11.BPDP BPPTJakartaIndonesia

Personalised recommendations