Bulletin of Volcanology

, 76:789 | Cite as

Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

  • Rosanna Bonasia
  • Chiara Scaini
  • Lucia Capra
  • Manuel Nathenson
  • Claus Siebe
  • Lilia Arana-Salinas
  • Arnau Folch
Research Article

Abstract

Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C yr BP). FALL3D model input eruptive parameters are constrained through an inversion method carried out with the semi-analytical HAZMAP model and are varied by sampling them using probability density functions. We analyze the influence of seasonal variations on ash dispersal and estimate the average persistence of critical ash concentrations at relevant locations and airports. This study assesses the impact that a Plinian eruption similar to the Ochre Pumice eruption would have on the main airports of Mexico and adjacent areas. The hazard maps presented here can support long-term planning that would help minimize the impacts of such an eruption on civil aviation.

Keywords

Popocatépetl Tephra hazard Plinian eruption Civil aviation FALL3D model 

References

  1. Arana-Salinas L, Siebe C, Macías JL (2010) Dynamics of the ca. 4965 yr 14C BP “Ochre Pumice” eruption of Popocatépetl volcano, México. J Volcanol Geotherm Res 192:212–231CrossRefGoogle Scholar
  2. Arce JL, Macías JL, Vázquez-Selem L (2003) The 10.5 ka Plinian eruption of Nevado de Toluca volcano, México: stratigraphy and hazard implications. Bull Geol Soc Amer 115:230–248CrossRefGoogle Scholar
  3. Arce JL, Cervantes KE, Macías JL, Mora JC (2005) The 12.1 ka Middle Toluca Pumice: a dacitic Plinian-subplinian eruption of Nevado de Toluca in Central México. J Volcanol Geoth Res 147:125–143CrossRefGoogle Scholar
  4. Arce JL, Macías JL, Rangel E, Layer P, Garduño-Monroy VH, Saucedo R, García F, Castro R, Pérez-Esquivias H (2012a) Late Pleistocene rhyolitic explosive volcanism at Los Azufres Volcanic Field, central México. In: Aranda-Gómez JJ, Tolson G, and Molina-Garza RS (eds) The Southern Cordillera and Beyond. Geol Soc Amer Field Guide 25, p 45–82Google Scholar
  5. Arce JL, Macías JL, Gardner JE, Rangel E (2012b) Reconstruction of the Sibinal Pumice, an andesitic Plinian eruption at Tacaná Volcanic Complex, Mexico-Guatemala. J Volcanol Geoth Res 217/218:39–55CrossRefGoogle Scholar
  6. Biass S, Bonadonna C (2012) A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador. Nat Hazards. doi:10.1007/s11069-012-0378-z Google Scholar
  7. Bloomfield K, Sánchez-Rubio G, Wilson L (1977) Plinian eruptions of Nevado de Toluca. Geol Rundschau 66:120–146CrossRefGoogle Scholar
  8. Bonadonna C (2006) Probabilistic modelling of tephra dispersal. In: Mader H, Cole S, Connor CB (eds) Statistics in volcanology. IAVCEI Series Volume 1, Geological Society of London, pp 243–259Google Scholar
  9. Bonadonna C, Connor CB, Houghton BF, Connor LJ, Byrne M, Laing A, Hincks TK (2005) Probabilistic modelling of tephra dispersal: hazard assessment of a multiphase rihyolitic eruption at Tarawera, New Zeland. J Geophys Res 110(10.1029), B03203Google Scholar
  10. Bonasia R, Macedonio G, Costa A, Mele D, Sulpizio R (2010) Numerical inversion and analysis of tephra fallout deposits from the 472 AD sub-Plinian eruption at Vesuvius (Italy) through a new best-fit procedure. J Volcanol Geotherm Res 189:238–246. doi:10.1016/j.jvolgeores.2009.11.009 CrossRefGoogle Scholar
  11. Bonasia R, Capra L, Costa A, Macedonio G, Saucedo R (2011) Tephra fallout hazard assessment for a Plinian eruptiove scenario at Volcán de Colima (Mexico). J Volcanol Geotherm Res 203:12–22CrossRefGoogle Scholar
  12. Bonasia R, Costa A, Folch A, Macedonio G, Capra L (2012) Numerical simulation of tephra transport and deposition of the 1982 El Chichón eruption and implications for hazard assessment. J Volcanol Geotherm Res 231:39–49CrossRefGoogle Scholar
  13. Capra L, Macías JL, Espíndola JM, Siebe C (1998) Holocene Plinian eruption of La Virgen Volcano, Baja California, México. J Volcanol Geotherm Res 80:239–266CrossRefGoogle Scholar
  14. Capra L, Carreras LM, Arce JL, Macías JL (2006) The Lower Toluca Pumice: A ca. 21,700 yr. B.P. Plinian eruption of Nevado de Toluca volcano, México. Geol Soc Amer Spec Pap 402:155–173Google Scholar
  15. Carey S, Sigurdsson H (1986) The 1982 eruptions of el chichón volcano, México (2): observations and numerical modelling of tephra-fall distribution. Bull Volcanol 48:127–141CrossRefGoogle Scholar
  16. Carey S, Sparks R (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125CrossRefGoogle Scholar
  17. Carey S, Gardner J, Sigurdsson H (1995) The intensity and magnitude of Holocene Plinian eruptions from Mount St. Helens volcano. J Volcanol Geotherm Res 66:185–202CrossRefGoogle Scholar
  18. Casadevall T (1993) Volcanic hazards and aviation safety, lessons of the past decade. FAA Aviat Saf J 2:1–11Google Scholar
  19. Casadevall T (1994) Volcanic ash and aviation safety. In: Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety Vol. 2047. U. S. Geological Survay Bullettin, pp 1–6Google Scholar
  20. Castro-Govea R, Siebe C (2007) Late Pleistocene–Holocene stratigraphy of La Malinche volcano, Central Mexico. J Volcanol Geoth Res 162:20–42CrossRefGoogle Scholar
  21. CENAPRED (2001) Las cenizas volcánicas del Popocatepetl y sus efectos para la aeronavegación e infraestructura aeroportuaria, Insituto de Geofısica, UNAMGoogle Scholar
  22. Costa A, Macedonio G, Folch A (2006) A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet Sci Lett 241:634–647CrossRefGoogle Scholar
  23. Costa A, Dell’Erba F, Di Vito MA, Isaia R, Macedonio G, Orsi G, Pfeiffer T (2009) Tephra fallout hazard assessment at Campi Flegrei caldera (Italy). Bull Volcanol 71(3):259–273CrossRefGoogle Scholar
  24. Dull R, Southon J, Kutterolf S, Freundt A, Wahl D, Sheets P (2010) Did the Ilopango TBJ eruption cause the AD 536 event? AGU Fall meeting, AbstractsGoogle Scholar
  25. EASA (2012) Possible courses of action for EASA to address the issue of volcanic ash ingestion in turbine engines. European Aviation Safety Agency. Avanced notice of proposed amendment (A-NPA) 2012, 21–18 pGoogle Scholar
  26. Fierstein J, Nathenson M (1992) Another look at the calculation of tephra fallout volumes. Bull Volcanol 54:156–167CrossRefGoogle Scholar
  27. Folch A, Sulpizio R (2010) Evaluating long-range volcanic ash hazard using supercomputing facilities: application to Somma-Vesuvius (Italy), and consequences for civil aviation over the Central Mediterranean Area. Bull Volcanol 72:1039–1059. doi:10.1007/s00445-010-0386-3 CrossRefGoogle Scholar
  28. Folch A, Costa A, Macedonio G (2009) FALL3D: a computational model for transport and deposition of volcanic ash. Comput Geosci 35(6):1334–1342CrossRefGoogle Scholar
  29. Gardner JE, Tait S (2000) The caldera-forming eruption of Volcán Ceboruco. Bull Volcanol 62:20–33CrossRefGoogle Scholar
  30. Guffanti M, Mayberry GC, Casadevall TJ, Wunderman R (2009) Volcanic hazards to airports. Nat Hazards 51(2):287–302CrossRefGoogle Scholar
  31. Guffanti M, Casadevall TJ, Budding K (2010) Encounters of aircraft with volcanic ash clouds: a compilation of known incidents, 1953–2009. USGS Data Series 545, http://pubs.usgs.gov/ds/545/
  32. Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69(1):1–24CrossRefGoogle Scholar
  33. IVATF-1 (2010) IVATF-1 report—First meeting of the international volcanic ash task force—Agenda Item 5: Development of ash concentration thresholds” Document IVATF/1-DP/5Google Scholar
  34. Kalnay E, Kanamitsu M, Kister R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, Woollen J, Zhu Y, Chelliah M, Ebisuzaki M, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Jospeh D (1996) The NCEP/NCAR 40-years reanalysis project. Bull Am Met Soc 77:437–470CrossRefGoogle Scholar
  35. Krishnaiah CR, Rao C (eds) (1988) Handbook of statistics, 6, sampling. Elsevier, AmsterdamGoogle Scholar
  36. Luhr JF (2000) The geology and petrology of Volcán San Juan (Nayarit, Mexico) and the compositionally zoned Tepic pumice. J Volcanol Geoth Res 95:109–156CrossRefGoogle Scholar
  37. Luhr JF, Carmichael ISE, Varekamp J (1984) The 1982 eruptions of El Chichón volcano, Chiapas, México: mineralogy and petrology of the anhydrite-bearing pumices. J Volcanol Geoth Res 23:69–108CrossRefGoogle Scholar
  38. Luhr JF, Navarro-Ochoa C, Savov IP (2010) Tephrochronology, petrology and gepchemstry of Late-Holocene pyroclastic deposits from Volcán de Colima, Mexico. J Volcanol Geoth Res 197:1–32CrossRefGoogle Scholar
  39. Macedonio G, Costa A, Longo A (2005) A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput Geosci 31:837–845CrossRefGoogle Scholar
  40. Macías JL, Carrasco G, Delgado H, Martin del Pozzo A, Siebe C, Hoblitt R, Sheridan M, Tilling R (1995) Mapa de peligros del volcán Popocatépetl: México, D.F. Universidad Nacional Autónoma de México, Insituto de GeofísicaGoogle Scholar
  41. Macías JL, Arce JL, Mora JC, Espíndola JM, Saucedo R (2003) A 550-year-old Plinian eruption at El Chichón Volcano, chiapas, México: explosive volcanism linked to reheating of the magma reservoir. J Gephys Res 108(B12):2569CrossRefGoogle Scholar
  42. Macías JL, Capra L, Arce JL, Espíndola JM, García-Palomo A, Sheridan MF (2008) Hazard map of El Chichón volcano, Chiapas, México: constrains posed by eruptive history and computer simulations. J Volcanol Geoth Res 175:444–458CrossRefGoogle Scholar
  43. Martin-Del Pozzo A (2012) Precursors to eruptions of Popocatépetl Volcano, Mexico. Geofísica Int 51(1):87–107Google Scholar
  44. Mendoza-Rosas A, De la Cruz-Reyna S (2008) A statistical method linking geological and historical eruption time series for volcanic hazard estimations: applications to active polygenetic volcanoes. J Volcanol Geotherm Res 176:277–290CrossRefGoogle Scholar
  45. Miller T, Casadevall T (2000) Volcanic ash hazards to aviation. In: Sigurdsson H, Houghton B, McNutt S, Rymes H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 915–930Google Scholar
  46. Morton B, Taylor G, Turner S (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc Lond 234:1–23CrossRefGoogle Scholar
  47. Nathenson M, Fierstein J (2012) Reevaluation of tephra volumes for the 1982 eruption of El Chichón volcano, Mexico. (abs): Eos Transactions of the American Geophysical Union, Fall Meeting Supplement, abstract V41B-2785Google Scholar
  48. Panfil MS, Gardner TW, Hirth KG (1999) Late Holocene stratigraphy of the Tetimpa archaeological sites, northeast flank of Popocatépetl volcano, central Mexico. Bull Geol Soc Amer 111:204–218CrossRefGoogle Scholar
  49. Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geotherm Res 140:237–294CrossRefGoogle Scholar
  50. Pyle D (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–5CrossRefGoogle Scholar
  51. Pyle D (1995) Assessment of the minimum volume of tephra fall deposits. J Volcanol Geotherm Res 69:379–382CrossRefGoogle Scholar
  52. Rodríguez-Elizarrarás S, Siebe C, Komorowski JC, Abrams M (2002) The Quetzalapa pumice: a voluminous late Pleistocene rhyolite deposit in the eastern Trans-Mexican Volcanic Belt. J Volcanol Geotherm Res 113:177–212CrossRefGoogle Scholar
  53. Rose WI, Grant NK, Lange IM, Powell JL, Easter J, DeGraff JM (1977) The evolution of Santa María volcano, Guatemala. J Geol 85:63–87CrossRefGoogle Scholar
  54. Rossotti A, Carrasco-Núñez G, Rosi M, DiMuro A (2006) Eruptive dynamics of the “Citlatépetl Pumice” at Citlatépetl volcano, Eastern México. J Volcanol Geoth Res 158:401–429CrossRefGoogle Scholar
  55. Rueda H, Macías JL, Arce JL, Gardner JE, Layer PW (2013) The 31 ka rhyolitic Plinian to Subplinian eruption of Tláloc volcano, Sierra Nevada, Central México. J Volcanol Geotherm Res 252:73–91Google Scholar
  56. Salinas S, Siebe C (2007) Phreato-plinian activity, a previously unrecognized hazard at Jocotitlan volcano, Central Mexico. Cities on Volcanoes 5 IAVCEI meeting, Shimabara, Japan, Nov. 19–23, Abstracts, p 130Google Scholar
  57. Saucedo R, Macías JL, Gavilanes JC, Arce JL, Komorowski JC, Gardner JE, Valdez-Moreno G (2010) Eyewitness, stratigraphy, chemistry, and eruptive dynamics of the 1913 Plinian eruption of Volcán de Colima, México. J Volcanol Geoth Res 191:149–166CrossRefGoogle Scholar
  58. Saucedo R, Macías JL, Gavilanes JC, Arce JL, Komorowski JC, Gardner JE, Valdez-Moreno G (2011) Corrigendum to Eyewitness, stratigraphy, chemistry, and eruptive dynamics of the 1913 Plinian eruption of Volcán de Colima, México. J Volcanol Geoth Res 207:67CrossRefGoogle Scholar
  59. Scaini C, Folch A, Navarro M (2012) Tephra hazard assessment at Concepción Volcano, Nicaragua. J Volcanol Geoth Res 219/220:41–51CrossRefGoogle Scholar
  60. Schaaf P, Stimac J, Siebe C, Macías JL (2005) Geochemical evidence for mantle origin and crustal processes in products from Popocatépetl and surrounding monogenetic volcanoes, Central Mexico. J Petrol 46:1243–1282CrossRefGoogle Scholar
  61. Scott W, Gardner C, Devoli G, Alvarez A (2006) The A.D. 1835 eruption of Volcán Cosigüina, Nicaragua: a guide for assessing local volcanic hazards. Geol Soc Amer Spec Pap 412:167–187Google Scholar
  62. Self S, Rampino MR, Carr MJ (1989) A reappraisal of the 1835 eruption of Cosigüina and its atmospheric impact. Bull Volcanol 52:57–65CrossRefGoogle Scholar
  63. Siebe C, Macías JL (2006) Volcanic hazards in the Mexico City metropolitan area from eruptions at Popocatépetl, Nevado de Toluca, and Jocotitlán stratovolcanoes and monogenetic scoria cones in the Sierra Chichinautzin Volcanic Field. In: Siebe C, Macías JL and Aguirre G (eds) Neogene-quaternary continental margin volcanism: perspective from México. Geol Soc Amer Special Paper 402:253–329Google Scholar
  64. Siebe C, Komorowski JC, Sheridan MF (1992) Morphology and emplacement of an unusual debris avalanche deposit at Jocotitlán volcano, Central Mexico. Bull Volcanol 54:573–589CrossRefGoogle Scholar
  65. Siebe C, Abrams M, and Macías JL (1995) Derrumbes gigantes, depósitos de avalancha de escombros y edad del actual cono del Volcán Popocatépetl. In: Comité Científico Asesor UNAM-CENAPRED: Volcán Popocatépetl, estudios realizados durante la crisis de 1994–1995. Edición Especial, Secretaría de Gobernación 195–220Google Scholar
  66. Siebe C, Abrams M, Macías J, Obenholzner J (1996) Repeated volcanic disasters in Prehispanic time at Popocatépetl, central Mexico: past key to the future? Geology 24:399–402CrossRefGoogle Scholar
  67. Sieron K, Siebe C (2008) Revised stratigraphy and eruption rates of Ceboruco stratovolcanoes and surrounding monogenetic vents (Nayarit, Mexico) from historical documents and new radiocarbon dates. J Volcanol Geoth Res 176:241–264CrossRefGoogle Scholar
  68. Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15CrossRefGoogle Scholar
  69. Spence RJS, Kelman I, Baxter PJ, Zuccaro G, Petrazzuoli S (2005) Residential building and occupant vulnerability to tephra fall. Nat Hazards Earth Syst Sci 5:477–494CrossRefGoogle Scholar
  70. Sulpizio R (2005) Three empirical methods for the calculation of distal volume of tephra-fall deposits. J Volcanol Geotherm Res 145:315–336CrossRefGoogle Scholar
  71. Sulpizio R, Folch A, Costa A, Scaini C, Dellino P (2012) Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil aviation. Bull Volcanol. doi:10.1007/s00445-012-0656-3 Google Scholar
  72. Suzuki T (1983) A theoretical model for dispersion of tephra. In: Shimozuru D, Yokoyama I (eds) Volcanism: physics and tectonics. Terrapub, Tokyo, pp 95–113Google Scholar
  73. Williams SN, Self S (1983) The October 1902 Plinian eruption of Santa María volcano, Guatemala. J Volcanol Geoth Res 16:33–56CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rosanna Bonasia
    • 1
  • Chiara Scaini
    • 2
  • Lucia Capra
    • 1
  • Manuel Nathenson
    • 3
  • Claus Siebe
    • 4
  • Lilia Arana-Salinas
    • 4
  • Arnau Folch
    • 2
  1. 1.Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoQuerétaroMexico
  2. 2.Barcelona Supercomputing Center-Centro Nacional de SupercomputaciónBarcelonaSpain
  3. 3.U.S. Geological SurveyMenlo ParkUSA
  4. 4.Departamento de Vulcanología, Instituto de GeofísicaUniversidad Nacionál Autónoma de MéxicoMéxicoMexico

Personalised recommendations