Bulletin of Volcanology

, 76:788 | Cite as

Structural control of monogenetic volcanism in the Garrotxa volcanic field (Northeastern Spain) from gravity and self-potential measurements

  • S. Barde-CabussonEmail author
  • J. Gottsmann
  • J. Martí
  • X. Bolós
  • A. G. Camacho
  • A. Geyer
  • Ll. Planagumà
  • E. Ronchin
  • A. Sánchez
Research Article


We report new geophysical observations on the distribution of subsurface structures associated with monogenetic volcanism in the Garrotxa volcanic field (Northern Spain). As part of the Catalan Volcanic Zone, this Quaternary volcanic field is associated with the European rifts system. It contains the most recent and best preserved volcanic edifices of the Catalan Volcanic Zone with 38 monogenetic volcanoes identified in the Garrotxa Natural Park. We conducted new gravimetric and self-potential surveys to enhance our understanding of the relationship between the local geology and the spatial distribution of the monogenetic volcanoes. The main finding of this study is that the central part of the volcanic field is dominated by a broad negative Bouguer anomaly of around −0.5 mGal, within which a series of gravity minima are found with amplitudes of up to −2.3 mGal. Inverse modelling of the Bouguer data suggests that surficial low-density material dominates the volcanic field, most likely associated with effusive and explosive surface deposits. In contrast, an arcuate cluster of gravity minima to the NW of the Croscat volcano, the youngest volcano of this zone, is modelled by vertically extended low-density bodies, which we interpret as a complex ensemble of fault damage zones and the roots of young scoria cones. A ground-water infiltration zone identified by a self-potential anomaly is associated with a steep horizontal Bouguer gravity gradient and interpreted as a fault zone and/or magmatic fissure, which fed the most recent volcanic activity in the Garrotxa. Gravimetric and self-potential data are well correlated and indicate a control on the locations of scoria cones by NNE–SSW and NNW–SSE striking tectonic features, which intersect the main structural boundaries of the study area to the north and south. Our interpretation of the data is that faults facilitated magma ascent to the surface. Our findings have major implications for understanding the relationship between subsurface structures and potential future volcanic activity in the Garrotxa volcanic field.


Self-potential Gravimetry Garrotxa Structural control Monogenetic volcanism 



We thank the Natural Park of the La Garrotxa Volcanic Zone and its staff for their support throughout this study. SBC acknowledges the JAE-Doc postdoctoral personal grant program of Consejo Superior de Investigaciones Científicas (JAEDoc_09_01319), JG acknowledges funding from a Royal Society University Research Fellowship and an International Joint Project grant with JM and AG acknowledges her post-doctoral Juan de la Cierva Grant (JCI-2010-06092). X. Bolós has been funded by grant Beca d’investigació “Oriol de Bolós” en Ciències Naturals (Olot, Spain). AGC has been supported by the MICINN research project AYA2010-17448. The work was also partially supported by the European Commission (FP7 Theme: ENV.2011.1.3.3-1; grant 282759: “VUELCO”). We sincerely thank the Executive Editor James D. L. White, Editor Takeshi Nishimura, and reviewers Charles Connor and Koki Aizawa for their constructive and helpful comments on our manuscript.

Supplementary material

445_2013_788_MOESM1_ESM.doc (838 kb)
Table 1 Detailed listing of gravity benchmarks and resultant gravity data (DOC 838 kb)


  1. Alberico I, Lirer L, Petrosino P, Scandone R (2002) A methodology for the evaluation of long-term volcanic risk from pyroclastic flows in Campi Flegrei (Italy). J Volcanol Geotherm Res 116:63–78CrossRefGoogle Scholar
  2. Alberico I, Lirer L, Petrosino P, Scandone R (2008) Volcanic hazard and risk assessment from pyroclastic flows at Ischia island (southern Italy). J Volcanol Geotherm Res 171:118–136CrossRefGoogle Scholar
  3. Aster R, Borchers B, Thurber C (2004) Parameter estimation and inverse problems. Elsevier Academic, Amsterdam, 301 pp.Google Scholar
  4. Barde-Cabusson S, Levieux G, Lénat JF, Finizola A, Revil A, Chaput M, Dumont S, Duputel Z, Guy A, Mathieu L, Saumet S, Sorbadère F, Vieille M (2009) Transient self-potential anomalies associated with recent lava flows at Piton de la Fournaise volcano (Réunion Island, Indian Ocean). J Volcanol Geotherm Res 187:158–166. doi: 10.1016/j.jvolgeores.2009.09.003 CrossRefGoogle Scholar
  5. Bedrosian PA, Unsworth MJ, Johnston MJS (2007) Hydrothermal circulation at Mount St. Helens determined by self-potential measurements. J Volcanol Geotherm Res 160:137–146CrossRefGoogle Scholar
  6. Blakely RJ, Christiansen RL, Guffanti M, Wells RE, Donnelly-Nolan JM, Muffler LJP, Clynne MA, Smith JG (1997) Gravity anomalies, Quaternary vents, and Quaternary faults in the southern Cascade Range, Oregon and California: implications for arc and backarc evolution. J Geophys Res 102(B10):22513–22527CrossRefGoogle Scholar
  7. Camacho AG, Fernandez J, Gottsmann J (2011) A new gravity inversion method for multiple subhorizontal discontinuity interfaces and shallow basins. J Geophys Res 116:B02413. doi: 10.1029/2010JB008023
  8. Cebriá JM, López-Ruiz J, Doblas M, Oyarzun R, Hertogen J, Benito R (2000) Geochemistry of the Quaternary alkali basalts of Garrotxa (NE Volcanic Province, Spain): a case of double enrichment of the mantle lithosphere. J Volcanol Geotherm Res 112:175–187Google Scholar
  9. Cebrià JM, Martín-Escorza C, López-Ruiz J, Morán-Zenteno DJ, Martiny BM (2011) Numerical recognition of alignments in monogenetic volcanic areas: examples from the Michoacán–Guanajuato volcanic field in Mexico and Calatrava in Spain. J Volcanol Geotherm Res 201:73–82. doi: 10.1016/j.jvolgeores.2010.07.016 CrossRefGoogle Scholar
  10. Cimarelli C, Di Traglia F, de Rita D, Gimeno Torrente D, Fernandez Turiel JL (2013) Space–time evolution of monogenetic volcanism in the mafic Garrotxa volcanic field (NE Iberian Peninsula). Bull Volcanol 75:758. doi: 10.1007/s00445-013-0758-6 CrossRefGoogle Scholar
  11. Connor CB, Hill BE (1995) Three nonhomogeneous Poisson models for the probability of basaltic volcanism: application to the Yucca Mountain region, Nevada. J Geophys Res 100:10107–10125CrossRefGoogle Scholar
  12. Connor CB, Stamatakos JA, Ferrill DA, Hill BE, Ofoegbu GI, Conway FM, Sagar B, Trapp J (2000) Geologic factors controlling patterns of small-volume basaltic volcanism: application to a volcanic hazards assessment at Yucca Mountain, Nevada. J Geophys Res 105:417–432CrossRefGoogle Scholar
  13. Gaffney ES, Damjanac B, Valentine GA (2007) Localization of volcanic activity: 2. Effects of pre-existing structure. Earth Planet. Sci Lett 263(3–4):323–338Google Scholar
  14. Gottsmann J, Camacho AG, Marti J, Wooller L, Fernandez J, Garcia A, Rymer H (2008) Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data: Implications for its evolution and recent reactivation. Phys Earth Planet Inter 168(3–4):212–230CrossRefGoogle Scholar
  15. Guérin G, Behamoun G, Mallarach JM (1985) Un exemple de fusió parcial en medi continental. El vulcanisme quaternari de la Garrotxa. Publicació del Museu Comarcal de la Garrotxa, Vitrina 19–26Google Scholar
  16. Ishido T, Kiruchi T, Matsushima N, Yano Y, Nakao S, Sugihara M, Tosha T, Takakura S, Ogawa Y (1997) Repeated self-potential profiling of Izu-Oshima Volcano, Japan. J Geomagn Geoelectr 49:1267–1278CrossRefGoogle Scholar
  17. Johnston MJS, Byerlee JD, Lockner D (2001) Rapid fluid disruption: a source of self-potential anomalies on volcanoes. J Geophys Res 106(B3):4327–4335CrossRefGoogle Scholar
  18. Kiyosugi K, Connor CB, Zhao D, Connor LJ, Tanaka K (2010) Relationships between volcano distribution, crustal structure, and P-wave tomography: an example from the Abu Monogenetic Volcano Group, SW Japan. Bull Volcanol 72:331–340. doi: 10.1007/s00445-009-0316-4 CrossRefGoogle Scholar
  19. Le Corvec N, Menand T, Lindsay J (2013) Interaction of ascending magma with pre-existing crustal fractures in monogenetic basaltic volcanism: an experimental approach. J Geophys Res 118:968–984. doi: 10.1002/jgrb.50142 CrossRefGoogle Scholar
  20. Lénat JF (2007) Retrieving self-potential anomalies in a complex volcanic environment: an SP/elevation gradient approach. Near Surf Geophys 5:161–170Google Scholar
  21. Linde N, Revil A (2007) Comment on “Electrical tomography of La Soufrière of Guadeloupe Volcano: Field experiments, 1D inversion and qualitative interpretation”, by F. Nicollin et al. Earth Planet Sci Lett 258:619–622. doi: 10.1016/j.epsl.2006.02.020 CrossRefGoogle Scholar
  22. Lutz TM, Gutmann JT (1995) An improved method for determining and characterizing alignments of pointlike features and its implications for the Pinacate volcanic field, Sonora, Mexico. J Geophys Res 100(B9):17659–17670CrossRefGoogle Scholar
  23. Maineult A, Bernabé Y, Ackerer P (2005) Detection of advected concentration and pH fronts from self-potential measurements. J Geophys Res 110:B11205. doi: 10.1029/2005JB003824
  24. Maineult A, Bernabé Y, Ackerer P (2006) Detection of advected, reacting redox fronts from self-potential measurements. J Contam Hydrol 86:32–52CrossRefGoogle Scholar
  25. Martí J, Mitjavila J, Roca E, Aparicio A (1992) Cenozoic magmatism of the Valencia trough (Western Mediterranean): relation between structural evolution and Volcanism. Tectonophysics 203:145–166CrossRefGoogle Scholar
  26. Martí J, Ll P, Geyer A, Canal E, Pedrazzi D (2011) Complex interaction between Strombolian and phreatomagmatic eruptions in the Quaternary monogenetic volcanism of the Catalan Volcanic Zone (NE of Spain). J Volcanol Geotherm Res 201(1–4):178–193. doi: 10.1016/j.jvolgeores.2010.12.009 CrossRefGoogle Scholar
  27. Martin AJ, Takahashi M, Umeda K, Yusa Y (2003) Probabilistic methods for estimating the long-term spatial characteristics of monogenetic volcanoes in Japan. Acta Geophys Pol 51:271–291Google Scholar
  28. Martinez A, Rivero L, Casas A (1997) Integrated gravity and seismic interpretation of duplex structures and imbricate thrust systems in the southeastern Pyrenees (NE Spain). Tectonophysics 282:303–329CrossRefGoogle Scholar
  29. Massenet F, Pham VN (1985) Experimental and theoretical basis of self-potential phenomena in volcanic areas with reference to results obtained on Mount Etna (Sicily). Earth Planet Sci Lett 73:415–429CrossRefGoogle Scholar
  30. Mauri G, Williams-Jones G, Saracco G (2010) Depth determinations of shallow hydrothermal systems by self-potential and multi-scale wavelet tomography. J Volcanol Geotherm Res 191(3):233–244CrossRefGoogle Scholar
  31. Paulsen TS, Wilson TJ (2010) New criteria for systematic mapping and reliability assessment of monogenetic volcanic vent alignments and elongate volcanic vents for crustal stress analyses. Tectonophysics 482(1):16–28CrossRefGoogle Scholar
  32. Pearson SCP, Kiyosugi K, Lehto HL, Saballos JA, Connor CB, Sanford WE (2012) Integrated geophysical and hydrothermal models of flank degassing and fluid flow at Masaya volcano, Nicaragua. Geochem Geophys Geosyst 13: Q05011. doi: 10.1029/2012GC004117
  33. Puiguriguer M, Alcalde G, Bassols E, Burjachs F, Exposito I, Planaguma L, Sana M, Yll E (2012) C-14 dating of the last Croscat volcano eruption (Garrotxa Region, NE Iberian Peninsula). Geol Acta 10(1):43–47Google Scholar
  34. Rout DJ, Cassidy J, Locke CA, Smith IE (1993) Geophysical evidence for temporal and structural relationships within the monogenetic basalt volcanoes of the Auckland volcanic field, northern New Zealand. J Volcanol Geotherm Res 57(1):71–83CrossRefGoogle Scholar
  35. Scandone R (1979) Preliminary evaluation of the volcanic hazard in the southern valley of Mexico. Geofis Int 18:21–35Google Scholar
  36. Valentine GA, Perry FV (2006) Decreasing magmatic footprints of individual volcanoes in a waning basaltic field. Geophys Res Lett 33:L14305. doi: 10.1029/2006GL026743 CrossRefGoogle Scholar
  37. Valentine GA, Krogh KEC (2006) Emplacement of shallow dikes and sills beneath a small basaltic volcanic center—the role of pre-existing structure (Paiute Ridge, southern Nevada, USA). Earth Planet Sci Lett 246(3–4):217–230CrossRefGoogle Scholar
  38. Wetmore PH, Connor CB, Kruse SE, Callihan S, Pignotta G, Stremtan C, Burke A (2009) Geometry of the Trachyte Mesa intrusion, Henry Mountains, Utah: Implications for the emplacement of small melt volumes into the upper crust. Geochem Geophys Geosyst 10: Q08006. doi: 10.1029/2009GC002469
  39. Wilson M, Downes H (1991) Tertiary-Quaternary extension-related alkaline magmatism in Western and Central Europe. J Petrol 32(4):811–849CrossRefGoogle Scholar
  40. Zhang D, Lutz T (1989) Structural control of igneous complexes and kimberlites: a new statistical method. Tectonophysics 159:137–148CrossRefGoogle Scholar

Copyright information

© European Union 2013

Authors and Affiliations

  • S. Barde-Cabusson
    • 1
    Email author
  • J. Gottsmann
    • 2
  • J. Martí
    • 1
  • X. Bolós
    • 1
  • A. G. Camacho
    • 3
  • A. Geyer
    • 1
  • Ll. Planagumà
    • 4
  • E. Ronchin
    • 1
  • A. Sánchez
    • 1
  1. 1.Institute of Earth Sciences Jaume Almera, ICTJA-CSICBarcelonaSpain
  2. 2.Department of Earth SciencesUniversity of BristolBristolUK
  3. 3.Instituto de Geociencias (CSIC, UCM)MadridSpain
  4. 4.Tosca, Environment Services of EducationOlotSpain

Personalised recommendations