Bulletin of Volcanology

, 75:774 | Cite as

40Ar/39Ar dating, geochemistry, and isotopic analyses of the quaternary Chichinautzin volcanic field, south of Mexico City: implications for timing, eruption rate, and distribution of volcanism

  • J. L. ArceEmail author
  • P. W. Layer
  • J. C. Lassiter
  • J. A. Benowitz
  • J. L. Macías
  • J. Ramírez-Espinosa
Research Article


Monogenetic structures located at the southern and western ends of the Chichinautzin volcanic field (Trans-Mexican Volcanic Belt, Central Mexico) yield 40Ar/39Ar ages ranging from 1.2 Ma in the western portion of the field to 1.0–0.09 Ma in the southern portion, all of which are older than the <0.04 Ma age previously established for the entire volcanic field. These new ages indicate: (1) an eruption rate of 0.47 km3/kyr, which is much lower than the 11.7 km3/kyr previously estimated; (2) that the Chichinautzin magmatism coexisted with the Zempoala (0.7 Ma) and La Corona (1.0 Ma) polygenetic volcanoes on the southern edge of Las Cruces Volcanic Range (Trans-Mexican Volcanic Belt); and confirm (3) that the drainage system between the Mexico and Cuernavaca basins was closed during early Pleistocene forming the Texcoco Lake. Whole-rock chemistry and Sr, Nd, and Pb isotopic data indicate heterogeneous magmatism throughout the history of Chichinautzin activity that likely reflects variable degrees of slab and sediment contributions to the mantle wedge, fractional crystallization, and crustal assimilation. Even with the revised duration of volcanism within the Chichinautzin Volcanic Field, its eruption rate is higher than most other volcanic fields of the Trans-Mexican Volcanic Belt and is comparable only to the Tacámbaro-Puruaran area in the Michoacán-Guanajuato Volcanic Field to the west. These variations in eruption rates among different volcanic fields may reflect a combination of variable subduction rates of the Rivera and Cocos plates along the Middle America Trench, as well as different distances from the trench, variations in the depth with respect to the subducted slab, or the upper plate characteristics.


Chichinautzin volcanic field 40Ar/39Ar dating Eruption rate Heterogeneous magmatism 



40Ar/39Ar dating was carried out at the Geochronology Laboratory, University of Alaska, Fairbanks. We are indebted to R. Torres-Orozco for his work in the isotopic analysis at the UT, Jackson School of Geosciences, Austin, TX. P. Girón performed X-ray fluorescence analysis at LUGIS, UNAM, and E. Lounejeva carried out ICP-MS analysis at LUGIS, UNAM. This research was supported by PAPIIT-IN107409 and CONACYT 98772 grants (to J.L. Arce). Thanks to J.E. Gardner and J.D. Keppie for their suggestions on the first draft of the manuscript. We are grateful to B. Jicha and R. Lange for their constructive reviews.


  1. Agustin-Flores J, Siebe C, Guilbaud MN (2011) Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin Volcanic Field, south of México City. J Volcanol Geotherm Res 201:143–162CrossRefGoogle Scholar
  2. Alaniz-Alvarez S, Nieto-Samaniego AF, Ferrari L (1998) Effects of strain rate in the distribution of monogenetic and polygenetic volcanism in the Trans-Mexican Volcanic Belt. Geology 26:591–594CrossRefGoogle Scholar
  3. Arce JL, Macías R, García-Palomo A, Capra L, Macías JL, Layer P, Rueda H (2008) Late Pleistocene flank collapse of Zempoala Volcano (Central Mexico) and the role of fault reactivation. J Volcanol Geotherm Res 177:944–958CrossRefGoogle Scholar
  4. Bloomfield K (1975) A Late-Quaternary monogenetic volcano field in central Mexico. Geologische Rundschau 64:476–497CrossRefGoogle Scholar
  5. Carlson RW, Hart WK (1988) Flood basalt volcanism in the northwestern United States. In: Macdougall JD (ed) Continental flood basalts. Kluwer, Dordrecht, pp 35–61CrossRefGoogle Scholar
  6. Carlson RW, Irving AJ (1994) Depletion and enrichment history of sub-continental lithospheric mantle: Os, Sr, Nd, and Pb evidence for xenoliths from the Wyoming Craton. Earth Planet Sci Lett 126:457–472CrossRefGoogle Scholar
  7. Cervantes P, Wallace P (2003) Role of H2O in subduction-zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31:235–238CrossRefGoogle Scholar
  8. De Cserna Z, Aranda-Gómez JJ, Mitre-Salazar LM (1988) Estructura geológica, gravimetría, sismicidad y relaciones neotectónicas regionales de la cuenca de México. Boletín del Instituto de Geología, UNAM, México 104:1–71Google Scholar
  9. Delgado-Martínez NE (2012) Evidencias de contaminación cortical en la dacita Tabaquillo, Campo Volcánico Chichinautzin. Undergraduate thesis, Universidad Autónoma de Guerrero, México, 99 pGoogle Scholar
  10. DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478CrossRefGoogle Scholar
  11. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202CrossRefGoogle Scholar
  12. Eggins SM, Woodhead JD, Kinsley LPJ, Mortimer GE, Sylvester P, McCulloch MT, Hergt JM, Handler MR (1997) A simple method for the precise determination of >=40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem Geol 134:311–326CrossRefGoogle Scholar
  13. Ersoy Y, Helvaci C (2010) FC-AFC-FCA and mixing modeler: a Microsoft’s Excel and spreadsheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing. Comput Geosci 36:383–390CrossRefGoogle Scholar
  14. Escobar-Wolf RP, Diehl JF, Singer BS, Rose WI (2010) 40Ar/39Ar and paleomagnetic constraints on the evolution of Volcán de Santa María, Guatemala. Geol Soc Am Bull 122:757–771CrossRefGoogle Scholar
  15. Ferrari LM, López-Martínez G, Aguirre-Díaz G, Carrasco-Nuñez G (1999) Space-time patterns of Cenozoic arc volcanism in central Mexico: from Sierra Madre Occidental to the Mexican Volcanic Belt. Geology 27:303–306CrossRefGoogle Scholar
  16. Fries C (1960) Geología del Estado de Morelos y de partes adyacentes de México y Guerrero. Región central meridional de México. Boletín del Instituto de Geología, UNAM 60: 234.Google Scholar
  17. García-Palomo A, Macias JL, Garduño VH (2000) Miocene to recent structural evolution of Nevado de Toluca volcano region, Central México. Tectonophysics 318:218–302CrossRefGoogle Scholar
  18. García-Palomo A, Macias JL, Arce JL, Capra L, Garduño VH, Espíndola JM (2002) Geology of Nevado de Toluca volcano and surrounding areas, central Mexico. Geological Society of America Map Series 1–48Google Scholar
  19. García-Palomo A, Zamorano JJ, López-Miguel C, Galván-García A, Carlos-Valerio V, Ortega R, Macías JL (2008) El arreglo morfoestructural de la Sierra de las Cruces, México Central. Revista Mexicana de Ciencias Geológicas 25:158–178Google Scholar
  20. Gómez-Tuena A, Langmuir CH, Goldstein SL, Straub SM, Ortega-Gutiérrez F (2007) Geochemical evidence for slab melting in the Trans-Mexican Volcanic Belt. J Petrol 48:537–562CrossRefGoogle Scholar
  21. Govindaraju K (1994) Compilation of working values and sample description for 383 standard reference materials. Geostandards Newsletter 18:331Google Scholar
  22. Guilbaud MN, Siebe C, Layer PW, Salinas S (2012) Reconstruction of the volcanic history of the Tacámbaro-Puruarán area (Michoacán, México) reveals high frequency of Holocene monogenetic eruptions. Bull Volcanol 74:1187–1211CrossRefGoogle Scholar
  23. Hamelin B, Manhes G, Albarede F, Allegre CJ (1985) Precise lead isotope measurements by the double spike technique: a reconsideration. Geoch Cosmoch Acta 49:173–182CrossRefGoogle Scholar
  24. Housh T, McMahon TP (2000) Sr, Nd and Pb isotopic characteristics of Late Miocene–Pleistocene collision-related igneous rocks in western New Guinea (Irian Jaya, Indonesia). Lithos 50:217–239CrossRefGoogle Scholar
  25. Huang F, Lundstrom CC (2007) 231Pa excess in arc volcanic rocks: constraint on melting rates at convergent margins. Geology 35:1007–1010CrossRefGoogle Scholar
  26. Lassiter JC, Blichert-Toft J, Hauri EH, Barsczus HG (2003) Isotope and trace element variations in lavas from Raivavae and Rapa, Cook Austral islands: constraints on the nature of HIMU- and EM-mantle and the origin of mid-plate volcanism in French Polynesia. Chem Geol 202:115–138CrossRefGoogle Scholar
  27. Layer PW (2000) 40Ar/39Ar age of the El’gygytgyn impact event, Chukotka, Russia. Meteoritic and Planetary Science 35:591–599CrossRefGoogle Scholar
  28. Layer PW, Garcia-Palomo A, Jones D, Macias JL, Arce JL, Mora JC (2009) El Chichon volcanic complex, Chiapas, Mexico: stages of evolution based on field mapping and 40Ar/39Ar geochronology. Geofisica Internacional 48:33–54Google Scholar
  29. Le Bas MJ, Le Maitre RW, Streckaisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  30. Lenhardt N, Böhnel H, Wemmer K, Torres-Alvarado IS, Hornung J, Hinderer M (2010) Petrology, magnetostratigraphy and geochronology of the Miocene volcaniclastic Tepoztlán formation: implications for the initiation of the Transmexican Volcanic Belt (Central Mexico). Bull Volcanol 72:817–832CrossRefGoogle Scholar
  31. Lozano R, Verma SP, Girón P, Velasco F, Morán-Zenteno D, Viera F, Chávez G (1995) Calibración preliminar de Fluorescencia de Rayos-X para análisis cuantitativos de elementos mayores en rocas ígneas. Actas INAGEQ 1:203–208Google Scholar
  32. Lozano-Santacruz R, Bernal JP (2005) Characterization of a new set of eight geochemical reference materials for XRF major and trace element analysis. Revista Mexicana de Ciencias Geológicas 22:329–344Google Scholar
  33. Luhr JF (1997) Extensional tectonics and diverse primitive volcanic rocks in the western Mexican Volcanic Belt. Can Mineral 35:473–500Google Scholar
  34. Macdonald GA, Katsura T (1964) Chemical composition of Hawaiian lavas. J Petrol 5:82–133CrossRefGoogle Scholar
  35. Márquez A, Oyarzu R, Doblas M, Verma SP (1999a) Alcalic (ocean-island basalt type) and calc-alkaline volcanism in the Mexican Volcanic Belt: a case for plume-related magmatism and propagating rifting at an active margin? Geology 27:51–54CrossRefGoogle Scholar
  36. Márquez A, Verma SP, Anguita F, Oyarzun R, Brandle JL (1999b) Tectonics and volcanism of Sierra Chichinautzin: extension at the front of the Central Trans-Mexican Volcanic Belt. J Volcanol Geotherm Res 93:125–150CrossRefGoogle Scholar
  37. Martin Del Pozzo AL (1982) Monogenetic volcanism in Sierra Chichinautzin, Mexico. Bull Volcanol 45:9–24CrossRefGoogle Scholar
  38. Matchan E, Phillips D (2011) New 40Ar/39Ar ages for selected young (<1 Ma) basalt flows of the Newer Volcanic Province, southeastern Australia. Quaternary Geochronology 6:356–368CrossRefGoogle Scholar
  39. McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method, 2nd ed. Oxford University Press, New York, 269 ppGoogle Scholar
  40. Mejia V, Böhnel H, Opdyke ND, Ortega-Rivera MA, Lee JKW, Aranda-Gómez JJ (2005) Paleosecular variation and time-averaged field recorded in late Pliocene-Holocene lava flows from Mexico. Geochem Geophys Geosyst 6:1–19Google Scholar
  41. Meriggi L, Macías JL, Tommasini S, Capra L, Conticelli S (2008) Heterogeneous magmas of the Quaternary Sierra Chichinautzin volcanic field (central Mexico): the role of an amphibole-bearing mantle and magmatic evolution processes. Revista Mexicana de Ciencias Geológicas 25:197–216Google Scholar
  42. Mooser F (1963) Historia tectónica de la Cuenca de México. Boletin de la Asociación Mexicana de Geólogos Petroleros 15:239–245Google Scholar
  43. Mooser F, Nairn AEM, Negendank JFW (1974) Paleomagnetic investigations of the Tertiary and Quaternary igneous rocks: VIII. A Paleomagnetic and petrologic study of volcanics of the Valley of Mexico. Geologische Rundschau 63:451–483CrossRefGoogle Scholar
  44. Osete ML, Ruíz-Martínez VC, Caballero MC, Galindo C, Urrutia-Fucugauchi J, Tarling HD (2000) Southward migration of continental volcanic activity in the Sierra de Las Cruces, Mexico: paleomagnetic and radiometric evidence. Tectonophysics 318:201–215CrossRefGoogle Scholar
  45. Ownby SE, Lange RA, Hall CM (2008) The eruptive history of the Mascota volcanic field, western Mexico: age and volume constraints on the origin of andesite among a diverse suite of lamprophyric and cal-alkaline lavas. J Volcanol Geotherm Res 177:1077–1091CrossRefGoogle Scholar
  46. Ownby SE, Lange RA, Hall CM, Delgado-Granados H (2011) Origin of andesite in the deep crust and eruption rates in the Tancítaro-Nueva Italia region of the central Mexican arc. Geol Soc Am Bull 123:274–294CrossRefGoogle Scholar
  47. Pardo M, Suárez G (1995) Shape of the subducted Rivera and Cocos plates in southern Mexico: seismic and tectonic implications. J Geophys Res 100:12357–12373CrossRefGoogle Scholar
  48. Renne PR, Mundil R, Balco G, Min K, Ludwig K (2010) Joint determination of 40K decay constants and teh 40Ar*/40K for the Fish Canyon sanidine standard and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349–5367CrossRefGoogle Scholar
  49. Rodríguez-Elizarrarás SR, Morales-Barrera W, Layer PW, González-Mercado E (2010) A quaternary monogenetic volcanic field in the Xalapa region, eastern Trans-Mexican volcanic belt: geology, distribution, and morphology of the volcanic vents. J Volcanol Geotherm Res 197:149–166CrossRefGoogle Scholar
  50. Schaaf P, Stimac J, Siebe C, Macías JL (2005) Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, central Mexico. J Petrol 46:1243–1282CrossRefGoogle Scholar
  51. Sheth HC, Torres-Alvarado IS, Verma SP (2002) What is the “Calc-alkaline rock series”? International Geology Review 44:686–701CrossRefGoogle Scholar
  52. Siebe C, Rodríguez-Lara V, Schaaf P, Abrams M (2004a) Geochemistry, Sr-Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico City. J Volcanol Geotherm Res 130:197–226CrossRefGoogle Scholar
  53. Siebe C, Rodríguez-Lara V, Schaaf P, Abrams M (2004b) Radiocarbon ages of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico City: implications for archaelogy and future hazards. Bull Volcanol 66:203–225CrossRefGoogle Scholar
  54. Siebe C, Arana-Salinas L, Abrams M (2005) Geology and radiocarbon ages of Tláloc, Tlacotenco, Cuauhtzin, Hijo del Cuauhtzin, Teuhtli, and Ocusacayo monogenetic volcanoes in the central part of the Sierra Chchicnautzin, México. J Volcanol Geotherm Res 141:225–243CrossRefGoogle Scholar
  55. Straub SM, Gómez-Tuena A, Zellmer GF, Espinasa-Perena R, Stuart FM, Cai MY, Langmuir CH, Martin Del Pozzo AL, Mesko GT (2013) The processes of melt differentiation in arc volcanic rocks: Insights from OIB-type arc magmas in Central Mexican Volcanic Belt. J Petrol 54:665–701CrossRefGoogle Scholar
  56. Sun S, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Saunders, A., Norry, M., (Eds.), Magmatism in ocean basins: Geological Society of London, Special Publication 42:313–345Google Scholar
  57. Todt W, Cliff RA, Hanser A, Hofmann AW (1993) Evaluation of 202Pb–205Pb double spike for high-precision lead isotope analysis. In: Basu A, Hart S (eds) Earth processes: reading the isotopic code. American Geophysical Union, Washington, D.C.. doi: 10.1029/GM095p0429 Google Scholar
  58. Todt W, Cliff RA, Hanser A, Hofmann AW (1996) Evaluation of a 202Pb–205Pb double spike for high-precision lead isotope analysis. In: Basu A. and Hart S. (eds), Earth processes: reading the isotopic code. American Geophysical Union geophysical Monograph, 95, 429–437Google Scholar
  59. UNAM, CENAPRED Seismology Group (1995) The Milpa Alta earthquake of January 21, 1995. Geofisica Internacional 34:335–362Google Scholar
  60. Verma SP (2000) Geochemistry of the subducted Cocos plate and the origin of subduction-unrelated mafic volcanism at the volcanic front of the central Mexican Volcanic Belt. In: Delgado, H., Aguirre-Díaz, G., Stock, J.M., (Eds), Cenozoic tectonics and volcanism of Mexico: Geological Society of America, Special Publication 334:195–222Google Scholar
  61. Wadge G (1984) Comparison of volcanic production rates and subduction rates in the Lesser Antilles and Central America. Geology 12:555–558CrossRefGoogle Scholar
  62. Walker JA (1981) Petrogenesis of lavas from cinder cone fields behind the volcanic front of Central America. Journal of Geology 89:721–739CrossRefGoogle Scholar
  63. Wallace PJ, Carmichael ISE (1999) Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions. Contribution to Mineralogy and Petrology 135:291–314CrossRefGoogle Scholar
  64. Wijbrans J, Schneider B, Kuiper K, Calvari S, Branca S, De Beni E, Norini G, Corsaro RA, Miraglia L (2011) 40Ar/39Ar geochronology of Holocene basalts; example from Stromboli, Italy. Quaternary Geochronology 6:223–232CrossRefGoogle Scholar
  65. Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571CrossRefGoogle Scholar
  66. Zindler A, Staudigel H, Batiza R (1984) Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity. Earth Planet Sci Lett 70:175–195CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. L. Arce
    • 1
    Email author
  • P. W. Layer
    • 2
  • J. C. Lassiter
    • 3
  • J. A. Benowitz
    • 2
  • J. L. Macías
    • 4
  • J. Ramírez-Espinosa
    • 5
  1. 1.Instituto de Geología, UNAMCd. Universitaria CoyoacanMéxicoMexico
  2. 2.Department of Geology and Geophysics and Geophysical InstituteUniversity of AlaskaFairbanksUSA
  3. 3.Department of Geological Sciences, Jackson School of GeosciencesUniversity of TexasAustinUSA
  4. 4.Instituto de GeofísicaUNAM, Campus MoreliaMexicoMexico
  5. 5.Unidad Académica de Ciencias de la TierraUniversidad Autónoma de GuerreroGuerreroMexico

Personalised recommendations