Advertisement

Bulletin of Volcanology

, 76:771 | Cite as

Long-term multi-hazard assessment for El Misti volcano (Peru)

  • Laura SandriEmail author
  • Jean-Claude Thouret
  • Robert Constantinescu
  • Sébastien Biass
  • Roberto Tonini
Research Article

Abstract

We propose a long-term probabilistic multi-hazard assessment for El Misti Volcano, a composite cone located <20 km from Arequipa. The second largest Peruvian city is a rapidly expanding economic centre and is classified by UNESCO as World Heritage. We apply the Bayesian Event Tree code for Volcanic Hazard (BET_VH) to produce probabilistic hazard maps for the predominant volcanic phenomena that may affect c.900,000 people living around the volcano. The methodology accounts for the natural variability displayed by volcanoes in their eruptive behaviour, such as different types/sizes of eruptions and possible vent locations. For this purpose, we treat probabilistically several model runs for some of the main hazardous phenomena (lahars, pyroclastic density currents (PDCs), tephra fall and ballistic ejecta) and data from past eruptions at El Misti (tephra fall, PDCs and lahars) and at other volcanoes (PDCs). The hazard maps, although neglecting possible interactions among phenomena or cascade effects, have been produced with a homogeneous method and refer to a common time window of 1 year. The probability maps reveal that only the north and east suburbs of Arequipa are exposed to all volcanic threats except for ballistic ejecta, which are limited to the uninhabited but touristic summit cone. The probability for pyroclastic density currents reaching recently expanding urban areas and the city along ravines is around 0.05 %/year, similar to the probability obtained for roof-critical tephra loading during the rainy season. Lahars represent by far the most probable threat (around 10 %/year) because at least four radial drainage channels can convey them approximately 20 km away from the volcano across the entire city area in heavy rain episodes, even without eruption. The Río Chili Valley represents the major concern to city safety owing to the probable cascading effect of combined threats: PDCs and rockslides, dammed lake break-outs and subsequent lahars or floods. Although this study does not intend to replace the current El Misti hazard map, the quantitative results of this probabilistic multi-hazard assessment can be incorporated into a multi-risk analysis, to support decision makers in any future improvement of the current hazard evaluation, such as further land-use planning and possible emergency management.

Keywords

BET_VH TITAN2D TEPHRA2 Probabilistic volcanic hazard Multi-hazard assessment El Misti Arequipa 

Notes

Acknowledgments

For this article and research, RC received the support from the French National Research Agency within the project “Laharisk” (ANR-09-RISK-005). LS and RT were supported by project ByMuR from the Italian Ministry of Research and Education (FIRB “Futuro in Ricerca”). The manuscript is CLERVOLC contribution number 67.

Supplementary material

445_2013_771_Fig13_ESM.jpg (1.9 mb)
Fig. A1

(JPEG 1928 kb)

445_2013_771_MOESM1_ESM.eps (10 kb)
High-resolution image (EPS 10 kb)
445_2013_771_Fig14_ESM.jpg (3.1 mb)
Fig. A2

(JPEG 3219 kb)

445_2013_771_MOESM2_ESM.eps (4.9 mb)
High-resolution image (EPS 5039 kb)
445_2013_771_Fig15_ESM.jpg (2.8 mb)
Fig. A3

(JPEG 2844 kb)

445_2013_771_MOESM3_ESM.eps (58.6 mb)
High resolution image (EPS 60017 kb)
445_2013_771_Fig16_ESM.jpg (3.1 mb)
Fig. A4

(JPEG 3191 kb)

445_2013_771_MOESM4_ESM.eps (19.1 mb)
High resolution image (EPS 19522 kb)
445_2013_771_Fig17_ESM.jpg (3.1 mb)
Fig. A5

(JPEG 3185 kb)

445_2013_771_MOESM5_ESM.eps (19.1 mb)
High resolution image (EPS 19534 kb)
445_2013_771_Fig18_ESM.jpg (2.4 mb)
Fig. A6

(JPEG 2490 kb)

445_2013_771_MOESM6_ESM.eps (9.9 mb)
High resolution image (EPS 10111 kb)
445_2013_771_Fig19_ESM.jpg (2.4 mb)
Fig. A7

(JPEG 2493 kb)

445_2013_771_MOESM7_ESM.eps (9.8 mb)
High resolution image (EPS 9992 kb)
445_2013_771_MOESM8_ESM.xls (84 kb)
Table A1 (XLS 84 kb)
445_2013_771_MOESM9_ESM.pdf (69 kb)
ESM 1 (PDF 69 kb)

References

  1. Alberico I, Petrosino P, Lirer L (2011) Volcanic hazard and risk assessment in a multi-source volcanic area: the example of Napoli city (Southern Italy). Nat Hazards Earth Syst Sci 11:1057–1070. doi: 10.5194/nhess-11.1057-2011 CrossRefGoogle Scholar
  2. Aspinall W (2006) Structured elicitation of expert judgement for probabilistic hazard and risk assessment in volcanic eruptions, In H. M. Mader, S. G. Coles, C. B. Connor and L. J. Connor (eds), Statistics in Volcanology, Special Publications of IAVCEI, 1, Geological Society London, 15-30Google Scholar
  3. Biass S, Bonadonna C (2013) A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador-Part I: probabilistic hazard assessment. Nat Hazards 65(1):477–495. doi: 10.1007/s11069-012-0378-z CrossRefGoogle Scholar
  4. Biass S, Frischknecht C, Bonadonna C (2013) A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador-Part II: vulnerability and risk assessment. Nat Hazards 65(1):497–521. doi: 10.1007/s11069-012-0457-1 CrossRefGoogle Scholar
  5. Bonadonna C (2006) Probabilistic modelling of tephra dispersion. In: H. M. Mader, S. G. Coles, C. B. Connor and L. J. Connor (eds) Statistics in volcanology. Special Publications of IAVCEI, 1, Geological Society London, pp. 243–259Google Scholar
  6. Bonadonna C, Macedonio G, Sparks RSJ (2002). Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: application to hazard assessment onMontserrat. In: Druitt T, Kokelaar BP (eds) The Eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, Memoirs, 21, 517–537Google Scholar
  7. Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J Geophys Res 110(10.1029)Google Scholar
  8. Bourdier JL, Abdurachman EK (2001) Decoupling of small-volume pyroclastic flows and related hazards at Merapivolcano, Indonesia. Bull Volcanol 63(5):309–325CrossRefGoogle Scholar
  9. Cacya L, Mariño J, Rivera M, Thouret JC (2007) La erupcion pliniana “Autopista” del volcan Misti (21,000-11,000 años AP). Boletín Soc Geol del Perú 102:25–42Google Scholar
  10. Capra L, Manea VC, Manea M, Norini G (2010) The importance of digital elevation model resolution on granular flow simulations: a test case for Colima volcano using TITAN2D computational routine. Nat Hazards. doi: 10.1007/s11069-011-9788-6 Google Scholar
  11. Charbonnier SJ, Gertisser R (2009) Numerical simulations of block-and-ash flows using Titan2D flow model: examples from the 2006 eruption of Merapi Volcano, Java, Indonesia. Bull Volcanol 71:953–959CrossRefGoogle Scholar
  12. Charbonnier SJ, Gertisser R (2012) Evaluation of geophysical mass flow models using the 2006 block-and-ash flows of Merapi Volcano, Java, Indonesia: towards a short-term hazard assessment tool. J Volcanol Geotherm Res 231–232:87–108. doi: 10.1016/j.jvolgeores.2012.02.015 CrossRefGoogle Scholar
  13. Chávez Chávez, J.A. (1992) La erupción del volcán Misti. Pasado, presente, futuro: Impresiones Zenit, Arequipa, 158 pp.Google Scholar
  14. Cioni R, Longo A, Macedonio G, Santacroce R, Sbrana A, Sulpizio R, Andronico D (2003) Assessing pyroclastic fall hazard through field data and numerical simulations: example from Vesuvius. J Geophys Res 108(B2):2063. doi: 10.1029/2001JB000642 CrossRefGoogle Scholar
  15. Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. J Volcanol Geotherm Res 178:331–346. doi: 10.1016/j.jvolgeores.2008.04.024 CrossRefGoogle Scholar
  16. Cobeñas G, Thouret JC, Bonadonna C, Boivin P (2012) The c.2030 yr BP Plinian eruption of El Misti volcano, Peru: eruption dynamics and hazard implications. J Volcanol Geotherm Res 241–242:105–120. doi: 10.1016/j.jvolgeores.2012.06.006 CrossRefGoogle Scholar
  17. Connor CB, Sparks RSJ, Mason RM, Bonadonna C, Young SR (2003) Exploring links between physical and probabilistic models of volcanic eruptions: the Soufriere Hills Volcano, Montserrat. Geophys Res Lett 30(13):1701. doi: 10.1029/2003GL017384 CrossRefGoogle Scholar
  18. Costantini L, Bonadonna C, Houghton BF, Wehrmann H (2009) New physical characterization of the Fontana Lapilli basaltic Plinian eruption, Nicaragua. Bull Volcanol 71:337–355. doi: 10.1007/s00445-008-0227-9 CrossRefGoogle Scholar
  19. Delaite G, Thouret JC, Sheridan M, Labazuy P, Stinton A, Souriot T, Van Westen C (2005) Assessment of volcanic hazards of El Misti and in the city of Arequipa, Peru, based on GIS and simulations, with emphasis on lahars. Zeit für Geomor NF, Suppl 140:209–231Google Scholar
  20. Druitt TH, Young SR, Baptie B, Bonadonna C, Calder ES, Clarke AB, Cole PD, Harford CL, Herd RA, Luckett R, Ryan G, Voight B (2002) Periodic vulcanian explosions and fountain collapse at the Soufriere Hills Volcano, Montserrat, 1997. In: Druitt TH & Kokelaar, B.P., Eds., The eruption of the Soufriere Hills Volcano, Montserrat from 1995 to 1999. Geol Soc London Memoir 21:281-306Google Scholar
  21. Esposti Ongaro T, Neri A, Menconi G, de’Michieli Vitturi M, Marianelli M, Cavazzoni C, Erbacci G, Baxter PJ (2008) Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius. J Volcanol Geotherm Res 178:378–396CrossRefGoogle Scholar
  22. Favalli M, Chirico GD, Papale P, Pareschi MT, Boschi E (2009) Lava flow hazard at Nyiragongo volcano, D.R.C. 1. Model calibration and hazard mapping. Bull Volcanol 71:363–374. doi: 10.1007/s00445-008-0233-y CrossRefGoogle Scholar
  23. Finizola A, Lénat JF, Macedo O, Ramos D, Thouret JC, Sortino F (2004) Fluid circulation and structural discontinuities inside Misti volcano (Peru) inferred from self-potential measurements. J Volcanol Geotherm Res 135(4):343–360CrossRefGoogle Scholar
  24. Fudali RF, Melson WG (1972) Ejecta velocities, magma chamber pressure and kinetic energy associated with the 1968 eruption of Arenal volcano. Bull Volcanol 35:383–401CrossRefGoogle Scholar
  25. Gerbe MC, Thouret JC (2004) Role of magma mixing in the petrogenesis of tephra erupted during the 1990–98 explosive activity of Nevado Sabancaya, southern Peru. Bull Volcanol 66(6):541–561CrossRefGoogle Scholar
  26. Harpel CJ, de Silva S, Salas G (2011) The 2 ka eruption of El Misti volcano, southern Peru – The most recent Plinian eruption of Arequipa’s iconic volcano. Geol Soc Am Spec Pap 484:72Google Scholar
  27. Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110(8):972–984CrossRefGoogle Scholar
  28. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  29. Kelfoun K, Samaniego P, Palacios P, Barba D (2009) Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador). Bull Volcanol 71:1057–1075. doi: 10.1007/s00445-009-0286-6 CrossRefGoogle Scholar
  30. Legros F (2001) Tephra stratigraphy of Misti volcano, Peru. J South Am Earth Sci 14:15–29CrossRefGoogle Scholar
  31. Lirer L, Petrosino P, Alberico I (2010) Hazard and risk assessment in a complex multi-source volcanic area: the example of the Campania Region, Italy. Bull Volcanol. doi: 10.1007/s00445-009-0334-2 Google Scholar
  32. Magill CR, Blong R (2005a) Volcanic risk ranking for Auckland, New Zealand: I. Methodology and hazard investigation. Bull Volcanol 67:331–339. doi: 10.1007/s00445-004-0374-6 CrossRefGoogle Scholar
  33. Magill CR, Blong R (2005b) Volcanic risk ranking for Auckland, New Zealand. II: hazard consequences and risk calculation. Bull Volcanol 67:340–349. doi: 10.1007/s00445-004-0375-5 CrossRefGoogle Scholar
  34. Mariño J, Rivera M, Cacya L, Thouret JC, Macedo O, Salas G, Siebe C, Tilling RI, Sheridan MF, Chavez A, Zuñiga S (2007) Mapa de los peligros volcánicos del Misti. Ingemmet, Proyecto Multinacional Andino, IRD, LMV, UNAM, Instituto de Geofísica UNAM, UNSA, Universidad Católica de Santa Maria, INDECI, Gobierno regional de Arequipa, Municipalidad provincial de Arequipa, PREDES, SENAMHI, LimaGoogle Scholar
  35. Martelli K (2011) The physical vulnerability of urban areas facing the threat of inundation from lahars and flash floods: application to the case study of Arequipa, Peru. Ph.D. thesis (unpublished, in English), Université Blaise Pascal Clermont. 312 pp (Appendix A, B, C)Google Scholar
  36. Marti J, Aspinall W, Sobradelo R, Felpeto A, Geyer A, Ortiz R, Baxter P, Cole P, Pacheco J, Blanco MJ, Lopez C (2008) A long-term volcanic hazard event tree for Teide-Pico Viejo stratovolcanoes (Tenerife, Canary Islands). J Volcanol Geotherm Res 178:543–552. doi: 10.1016/j.jvolgeores.2008.09.023 CrossRefGoogle Scholar
  37. Marzocchi W, Woo G (2009) Principles of volcanic risk metrics: theory and the case study of Mount Vesuvius and Campi Flegrei, Italy. J Geophys Res 114, B03213. doi: 10.1029/2008JB005908 Google Scholar
  38. Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mt Vesuvius. J Geophys Res 109, B11201. doi: 10.1029/2004JB003155 CrossRefGoogle Scholar
  39. Marzocchi W, Sandri L, Selva J (2008) BET_EF: a probabilistic tool for long- and short-term eruption forecasting. Bull Volcanol 70:623–632. doi: 10.1007/s00445-007-0157-y CrossRefGoogle Scholar
  40. Marzocchi W, Sandri L, Selva J (2010) BET_VH: a probabilistic tool for long-term volcanic hazard assessment. Bull Volcanol 72:705–716. doi: 10.1007/s00445-010-0357-8 CrossRefGoogle Scholar
  41. Mastin LG (1991) The roles of magma and groundwater in the phreatic eruptions at Inyo Craters, Long Valley Caldera, California. Bull Volcanol 53:579–596CrossRefGoogle Scholar
  42. Mastin, LG (2001) A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions. USGS open—file report 01-45, version 1.2Google Scholar
  43. Moore JG (1967) Base surge in recent volcanic eruptions. Bull Volcanol 30:337–363CrossRefGoogle Scholar
  44. Mosquera-Machado S, Dilley M (2009) A comparison of selected global disaster risk assessment results. Nat Hazards 48:439–456. doi: 10.1007/s11069-008-9272-0 CrossRefGoogle Scholar
  45. Neri A, Macedonio G, Gidaspow D, Esposti Ongaro T (2001) Multiparticle simulation of collapsing volcanic columns and pyroclastic flows. Volcanic Simulation Group Report 2001-2. ETS, PisaGoogle Scholar
  46. Neri A, Aspinall WP, Cioni R, Bertagnini A, Baxter PJ, Zuccaro G, Andronico D, Barsotti S, Cole PD, Esposti Ongaro T, Hincks TK, Macedonio G, Papale P, Rosi M, Santacroce R, Woo G (2008) Developing an event tree for probabilistic hazard and risk assessment at Vesuvius. J Volcanol Geotherm Res 178:397–415. doi: 10.1016/j. jvolgeores.2008.05.014 CrossRefGoogle Scholar
  47. Newhall CG, Hoblitt RP (2002) Constructing event trees for volcanic crises. Bull Volcanol 64:3–20. doi: 10.1007/s004450100173 CrossRefGoogle Scholar
  48. Newhall CG, Punongbayan RS (eds) (1996) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of Volcanology and Seismology, Quezon City, and University of Washington Press, Seattle and LondonGoogle Scholar
  49. Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530. doi: 10.1007/s00445-003-0336-4 CrossRefGoogle Scholar
  50. Pacheco J, Sykes LR (1992) Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bull Seismol Soc Am 82:1306–1349Google Scholar
  51. Patra AK, Bauer AC, Nichita C, Pitman EB, Sheridan MF, Bursik MI (2005) Parallel adaptive simulation of dry avalanches over natural terrain. J Volcanol Geotherm Res 139:1–21CrossRefGoogle Scholar
  52. Pitman EB, Patra A, Bauer A, Nichita C, Sheridan M, Bursik M (2003) Computing debris flows. Phys Fluids 15:3638–3646CrossRefGoogle Scholar
  53. Procter JN, Cronin SJ, Platz T, Patra A, Dalbey K, Sheridan MF, Vince VE (2010) Mapping block-and-ash flow hazard based on TITAN2D simulations: a case study from Mt. Taranaki, NZ. Nat Hazards 53:483–501CrossRefGoogle Scholar
  54. Rivera M, Thouret JC, Marino J, Berolatti R, Fuentes J (2010) Characteristics and management of the 2006–2008 volcanic crisis at the Ubinas volcano (Peru). J Volcanol Geotherm Res 198:19–34. doi: 10.1016/j.jvolgeores.2010.07.020 CrossRefGoogle Scholar
  55. Rupp B, Bursik MI, Namikawa L, Webb A, Patra AK, Saucedo R, Macías JL, Renschler CS (2006) Computational modeling of the 1991 block and ash flows at Colima Volcano, Mexico. In: Siebe et al. (ed) Neogene–quaternary continental margin volcanism: a perspective from México. Geol Soc Amer Spec Paper 402: 237–252Google Scholar
  56. Sandri L, Jolly G, Lindsay J, Howe T, Marzocchi W (2012) Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand. Bull Volcanol 74:705–723. doi: 10.1007/s00445-011-0556-y CrossRefGoogle Scholar
  57. Schilling SP (1998) LAHARZ: GIS program for automated mapping of lahar-inundation hazard zones. U.S. Geological Survey Open-File Report 98-638Google Scholar
  58. Selva J, Costa A, Marzocchi W, Sandri L (2010) BET VH: exploring the influence of natural uncertainties on long-term hazard from tephra fallout at Campi Flegrei (Italy). Bull Volcanol 72:717–733. doi: 10.1007/s00445-010-0358-7 CrossRefGoogle Scholar
  59. Sheridan MF, Stinton AJ, Patra A, Pitman EB, Bauer A, Nichita CC (2005) Evaluating TITAN2D mass-flow model using 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington. J Volcanol Geotherm Res 139(1–2):89–102CrossRefGoogle Scholar
  60. Sheridan MF, Patra A, Dalbey K, Hubbard B (2010) Probabilistic digital hazard maps for avalanches and massive pyroclastic flows using TITAN2D. Geol Soc Am Spec Pap 2010(464):281–291. doi: 10.1130/2010.2464(14) CrossRefGoogle Scholar
  61. Sigurdsson H, Carey S, Fisher RV (1987) The 1982 eruption of El Chichón volcano, Mexico: physical properties of pyroclastic surges. Bull Volcanol 49:467–488CrossRefGoogle Scholar
  62. Steinberg GS, Lorenz V (1983) External ballistics of volcanic explosions. Bull Volcanol 46-4Google Scholar
  63. Sulpizio R, Capra L, Sarocchi D, Saucedo R, Gavilanes-Ruiz JC, Varley NR (2010) Predicting the block-and-ash flow inundation areas at Volcan de Colima (Colima, Mexico) based on the present day (February 2010) status. J Volc Geotherm Res 193:43–66Google Scholar
  64. Thierry P, Stieltjes L, Kouokam E, Nguéya P, Salley PM (2008) Multi-hazard risk mapping and assessment on an active volcano: the GRINP project at Mount Cameroon. Nat Hazards 45:429–456. doi: 10.1007/s11069-007-9177-3 CrossRefGoogle Scholar
  65. Thouret JC, Suni J, Eissen JP, Navarro P (1999) Assessment of volcanic hazards in the Arequipa area based on the eruption history of Misti volcano, southern Peru. Zeit für Geomor Suppl-Bd 114:89–112Google Scholar
  66. Thouret JC, Finizola A, Fornari M, Suni J, Legeley-Padovani A, Frechen M (2001) Geology of El Misti volcano nearby the city of Arequipa, Peru. Geol Soc Am Bull 113(12):1593–1610CrossRefGoogle Scholar
  67. Thouret JC, Enjolras G, Martelli K, Santoni O, Luque JA, Nagata M, Arguedas A, Macedo Franco L (2013) Combining criteria for delineating lahar- and flood-flood-prone hazard and risk zones in the city of Arequipa, Peru. Nat Hazards Earth Sci Syst 13:339–360. doi: 10.5194/nhess-13-1-2013 CrossRefGoogle Scholar
  68. Tort A, Finizola A (2005) Structural survey of Misti volcanic cone (southern Peru) combining elliptical Fourier function analysis of the volcano morphology and self-potential measurements. J Volcanol Geotherm Res 141:283–297. doi: 10.1016/j.jvolgeores.2004.11.005 CrossRefGoogle Scholar
  69. Vargas Franco, R., Thouret, J.-C., Delaite, G., van Westen, C., Sheridan, M.F., Siebe, C., Mariño, J., Souriot, T., Stinton, A. (2010) Mapping and assessing volcanic hazards and risks in the city of Arequipa, Peru, based on GIS techniques. In: G Groppelli & L. Viereck-Goette (eds) Stratigraphy and geology of volcanic areas. Geol Soc Amer Special Paper 464: 265–280, doi:  10.1130/2010.2464(13)
  70. Wadge G, Jackson P, Bower SM (1998) Computer simulations of pyroclastic flows from dome collapse. Geophys Res Lett 25(19):3677–3680CrossRefGoogle Scholar
  71. Waitt, R.B., Mastin, L.G., Miller, T.P. (1995) Ballistics showers during Crater Peak eruptions of Mount Spurr volcano, summer 1992. In: Keith T.E.C. (ed) The 1992 eruptions of Crater Peak vent, Mount Spurr volcano, Alaska. U.S. Geological Survey Bulletin 2139Google Scholar
  72. Waters AC, Fisher RV (1971) Base surges and their deposits; Capelinhos and Taal volcanoes. J Geophys Res 76:5596–5614CrossRefGoogle Scholar
  73. Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions—IV. The control of magma properties and conduit geometry on eruption column behavior, Geophys. J R Astron Soc 63:117–148CrossRefGoogle Scholar
  74. Zamácola Y., Jaíreguí, J.D. (1804) Apuntes para la historia de Arequipa: primer festival del libro arequipeño, Edición 1958, Arequipa, 15 p.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Laura Sandri
    • 1
    Email author
  • Jean-Claude Thouret
    • 2
  • Robert Constantinescu
    • 3
  • Sébastien Biass
    • 4
  • Roberto Tonini
    • 1
  1. 1.Istituto Nazionale di Geofisica e VulcanologiaBolognaItaly
  2. 2.PRES Clermont, Université Blaise Pascal, Laboratoire Magmas et Volcans, UMR6524 CNRS, IRD-R163, CLERVOLCClermont-Ferrand cedexFrance
  3. 3.Faculty of GeographyBabeş-Bolyai UniversityCluj-NapocaRomania
  4. 4.Section des sciences de la Terre et de l’environnement, Université de GenèveGenevaSwitzerland

Personalised recommendations