Advertisement

Bulletin of Volcanology

, 75:767 | Cite as

Evolution of the crustal magma plumbing system during the build-up to the 22-ka caldera-forming eruption of Santorini (Greece)

  • G. N. FabbroEmail author
  • T. H. Druitt
  • S. Scaillet
Research Article

Abstract

The formation of shallow, caldera-sized reservoirs of crystal-poor silicic magma requires the generation of large volumes of silicic melt, followed by the segregation of that melt and its accumulation in the upper crust. The 21.8 ± 0.4-ka Cape Riva eruption of Santorini discharged >10 km3 of crystal-poor dacitic magma, along with <<1 km3 of hybrid andesite, and collapsed a pre-existing lava shield. We have carried out a field, petrological, chemical, and high-resolution 40Ar/39Ar chronological study of a sequence of lavas discharged prior to the Cape Riva eruption to constrain the crustal residence time of the Cape Riva magma reservoir. The lavas were erupted between 39 and 25 ka, forming a ∼2-km3 complex of dacitic flows, coulées and domes up to 200 m thick (Therasia dome complex). The Therasia dacites show little chemical variation with time, suggesting derivation from one or more thermally buffered reservoirs. Minor pyroclastic layers occur intercalated within the lava succession, particularly near the top. A prominent pumice fall deposit correlates with the 26-ka Y-4 ash layer found in deep-sea sediments SE of Santorini. One of the last Therasia lavas to be discharged was a hybrid andesite formed by the mixing of dacite and basalt. The Cape Riva eruption occurred no more than 2,800 ± 1,400 years after the final Therasia activity. The Cape Riva dacite is similar in major element composition to the Therasia dacites, but is poorer in K and most incompatible trace elements (e.g. Rb, Zr and LREE). The same chemical differences are observed between the Cape Riva and Therasia hybrid andesites, and between the calculated basaltic mixing end-members of each series. The Therasia and Cape Riva dacites are distinct silicic magma batches and are not related by shallow processes of crystal fractionation or assimilation. The Therasia lavas were therefore not simply precursory leaks from the growing Cape Riva magma reservoir. The change 21.8 ky ago from a magma series richer in incompatible elements to one poorer in those elements is one step in the well documented decrease with time of incompatibles in Santorini magmas over the last 530 ky. The two dacitic magma batches are interpreted to have been emplaced sequentially into the upper crust beneath the summit of the volcano, the first (Therasia) then being partially, or wholly, flushed out by the arrival of the second (Cape Riva). This constrains the upper-crustal residence time of the Cape Riva reservoir to less than 2,800 ± 1,400 years, and the associated time-averaged magma accumulation rate to >0.004 km3 year-1. Rapid ascent and accumulation of the Cape Riva dacite may have been caused by an increased flux of mantle-derived basalt into the crust, explaining the occurrence of hybrid andesites (formed by the mixing of olivine basalt and dacite in approximately equal proportions) in the Cape Riva and late Therasia products. Pressurisation of the upper crustal plumbing system by sustained, high-flux injection of dacite and basalt may have triggered the transition from prolonged, largely effusive activity to explosive eruption and caldera collapse.

Keywords

Santorini Magma reservoirs Melt accumulation Crystal residence timescales Calderas 

Notes

Acknowledgments

The authors thank M Benbakkar and C Chauvel for providing major element and trace element analyses, respectively, and J-L Devidal for help with the electron microprobe. J Keller kindly drew our attention to the Y-4 deep-sea ash layer. E Klemetti, D Morgan and G Zellmer provided helpful reviews, and F Costa commented on an earlier version of the manuscript. The work was carried out in the framework of the project ‘Storage and Mixing at Santorini’ financed by the French Agence National de Recherche [ANR-08-BLAN-0249-01]. GN Fabbro was funded by the Région d’Auvergne. This is Laboratory of Excellence ClerVolc contribution number 76.

Supplementary material

445_2013_767_MOESM1_ESM.pdf (53 kb)
Supplementary Table S1 Full 40Ar/39Ar data (PDF 52 kb)
445_2013_767_MOESM2_ESM.pdf (4 kb)
Supplementary Table S2 Major element composition of glass from pumices in the Cape Tripiti deposit (PDF 4 kb)
445_2013_767_MOESM3_ESM.pdf (16 kb)
Supplementary Table S3 Major element composition, temperature and fO2 determinations for pairs of magnetite and ilmenite from Therasia pumices (PDF 15 kb)
445_2013_767_MOESM4_ESM.pdf (28 kb)
Supplementary Table S4 Whole rock and groundmass chemical analyses of the Therasia and Cape Riva deposits (PDF 28 kb)

References

  1. Allan ASR, Morgan DJ, Wilson CJN, Millet M-A (2013) From mush to eruption in centuries: assembly of the super-sized Oruanui magma body. Contrib Miner Pet 166:143–164. doi: 10.1007/s00410-013-0869-2 CrossRefGoogle Scholar
  2. Andersen DJ, Lindsley DH (1985) New (and final!) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. Eos Trans Am Geophys Union 66:416Google Scholar
  3. Andújar J, Scaillet B, Pichavant M, Druitt TH (2010) Differentiation conditions of a basaltic magma from Santorini and its bearing on andesitic/dacitic magma production. AGU Fall Meeting, San Francisco, pp V43A–V2354A, AbstractGoogle Scholar
  4. Annen C (2009) From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet Sci Lett 284:409–416. doi: 10.1016/j.epsl.2009.05.006 CrossRefGoogle Scholar
  5. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Pet 47:505–539. doi: 10.1093/petrology/egi084 CrossRefGoogle Scholar
  6. Asku AE, Jenner G, Hiscott RN, İşler EB (2008) Occurrence, stratigraphy and geochemistry of late Quaternary tephra layers in the Aegean Sea and the Marmara Sea. Mar Geol 252:174–192. doi: 10.1016/j.margeo.2008.04.004 CrossRefGoogle Scholar
  7. Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Pet 45:1565–1582. doi: 10.1093/petrology/egh019 CrossRefGoogle Scholar
  8. Bachmann O, Bergantz GW (2006) Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. J Volcanol Geotherm Res 149:85–102. doi: 10.1016/j.jvolgeores.2005.06.002 CrossRefGoogle Scholar
  9. Bachmann O, Bergantz G (2008) The magma reservoirs that feed supereruptions. Elements 4:17–21. doi: 10.2113/GSELEMENTS.4.1.17 CrossRefGoogle Scholar
  10. Bacon CR (1985) Implications of silicic vent patterns for the presence of large crustal magma chambers. J Geophys Res 90:11243–11252. doi: 10.1029/JB090iB13p11243 CrossRefGoogle Scholar
  11. Bacon CR, Lanphere MA (2006) Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon. Geol Soc Am Bull 118:1331–1359. doi: 10.1130/B25906.1 CrossRefGoogle Scholar
  12. Bailey JC, Jensen ES, Hansen A, Kann ADJ, Kann K (2009) Formation of heterogeneous magmatic series beneath North Santorini, South Aegean island arc. Lithos 110:20–36. doi: 10.1016/j.lithos.2008.12.002 CrossRefGoogle Scholar
  13. Barton M, Salters VJM, Huijsmans JPP (1983) Sr isotope and trace element evidence for the role of continental crust in calc-alkaline volcanism on Santorini and Milos, Aegean Sea, Greece. Earth Planet Sci Lett 63:273–291. doi: 10.1016/0012-821X(83)90042-0 CrossRefGoogle Scholar
  14. Blundy J, Cashman K (2008) Petrologic reconstruction of magmatic system variables and processes. Rev Miner Geochem 69:179–239. doi: 10.2138/rmg.2008.69.6 CrossRefGoogle Scholar
  15. Briqueu L, Javoy M, Lancelot JR, Tatsumoto M (1986) Isotope geochemistry of recent magmatism in the Aegean arc: Sr, Nd, Hf, and O isotopic ratios in the lavas of Milos and Santorini—geodynamic implications. Earth Planet Sci Lett 80:41–54. doi: 10.1016/0012-821X(86)90018-X CrossRefGoogle Scholar
  16. Brown SJA, Fletcher IR (1999) SHRIMP U-Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: Evidence for >250 k.y. magma residence times. Geology 27:1035–1038. doi: 10.1130/0091-7613(1999)027<1035:SUPDOT>2.3.CO;2 CrossRefGoogle Scholar
  17. Brown M, Solar GS (1998) Shear-zone systems and melts: feedback relations and self-organization in orogenic belts. J Struct Geol 20:211–227. doi: 10.1016/S0191-8141(97)00068-0 CrossRefGoogle Scholar
  18. Burgisser A, Bergantz GW (2011) A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471:212–215. doi: 10.1038/nature09799 CrossRefGoogle Scholar
  19. Cadoux A, Andújar J, Scaillet B, Druitt TH, Deloule E (2013) Santorini volcano magma plumbing system: constraints from a combined experimental and natural products study. IAVCEI Scientific Assembly, Kagoshima, Japan, 4W_1B–P9Google Scholar
  20. Chang W-L, Smith RB, Farrell J, Puskas CM (2010) An extraordinary episode of Yellowstone caldera uplift, 2004–2010, from GPS and InSAR observations. Geophys Res Lett 37:L23302. doi: 10.1029/2010GL045451 Google Scholar
  21. Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, Van Calsteren PW, Davidson JP (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U–Th and U–Pb systematics in zircons. J Pet 46:3–32. doi: 10.1093/petrology/egh060 CrossRefGoogle Scholar
  22. Clift P, Blusztajn J (1999) The trace-element characteristics of Aegean and Aeolian volcanic arc marine tephra. J Volcanol Geotherm Res 92:321–347. doi: 10.1016/S0377-0273(99)00059-1 CrossRefGoogle Scholar
  23. Costa F (2008) Residence times of silicic magmas associated with calderas. In: Gottsmann J, Martí J (eds) Caldera Volcanism Anal. Model. Response. Elsevier, Amsterdam, pp 1–55Google Scholar
  24. Cottrell E, Gardner JE, Rutherford MJ (1999) Petrologic and experimental evidence for the movement and heating of the pre-eruptive Minoan rhyodacite (Santorini, Greece). Contrib Miner Pet 135:315–331. doi: 10.1007/s004100050514 CrossRefGoogle Scholar
  25. Druitt TH (1983) Explosive volcanism on Santorini. Greece (Ph.D.), University of CambridgeGoogle Scholar
  26. Druitt TH (1985) Vent evolution and lag breccia formation during the Cape Riva eruption of Santorini, Greece. J Geol 93:439–454. doi: 10.1086/628965 CrossRefGoogle Scholar
  27. Druitt TH (2013) New insights into the initiation and venting of the Bronze-Age eruption of Santorini, from component analysis. Bull Volcanol (in press)Google Scholar
  28. Druitt TH, Francaviglia V (1992) Caldera formation on Santorini and the physiography of the islands in the late Bronze Age. Bull Volcanol 54:484–493. doi: 10.1007/BF00301394 CrossRefGoogle Scholar
  29. Druitt TH, Sparks RSJ (1982) A proximal ignimbrite breccia facies on Santorini, Greece. J Volcanol Geotherm Res 13:147–171. doi: 10.1016/0377-0273(82)90025-7 CrossRefGoogle Scholar
  30. Druitt TH, Edwards L, Mellors RM et al (1999) Santorini Volcano. Geological Society, London, Memoirs 19Google Scholar
  31. Druitt TH, Costa F, Deloule E, Dungan M, Scaillet B (2012) Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482:77–80. doi: 10.1038/nature10706 CrossRefGoogle Scholar
  32. Eriksen U, Friedrich WL, Buchardt B, Tauber H, Thomsen MS (1990) The Stronghyle caldera: geological, palaeontological and stable isotope evidence from radiocarbon dated stromatolites from Santorini. In: Hardy DA, Keller J, Galanopoulos VP, Flemming NC, Druitt TH (eds) Thera Aegean World III. The Thera Foundation, London, pp 139–150Google Scholar
  33. Fairbanks RG, Mortlock RA, Chiu T-C, Cao L, Kaplan A, Guilderson TP, Fairbanks TW, Bloom AL, Grootes PM, Nadeau M-J (2005) Radiocarbon calibration curve spanning 0 to 50,000 years bp based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat Sci Rev 24:1781–1796. doi: 10.1016/j.quascirev.2005.04.007 CrossRefGoogle Scholar
  34. Federman AN, Carey SN (1980) Electron microprobe correlation of tephra layers from Eastern Mediterranean abyssal sediments and the Island of Santorini. Quat Res 13:160–171. doi: 10.1016/0033-5894(80)90026-5 CrossRefGoogle Scholar
  35. Francalanci L, Vougioukalakis GE, Perini G, Manetti P (2005) A West–east traverse along the magmatism of the south Aegean volcanic arc in the light of volcanological, chemical and isotope data. In: Fytikas M, Vougioukalakis GE (eds) The South Aegean active volcaninc arc: present knowledge and future perspectives. Developments in Volcanology, Elsevier, Amsterdam, pp 65–111Google Scholar
  36. Froger J-L, Remy D, Bonvalot S, Legrand D (2007) Two scales of inflation at Lastarria-Cordon del Azufre volcanic complex, central Andes, revealed from ASAR-ENVISAT interferometric data. Earth Planet Sci Lett 255:148–163. doi: 10.1016/j.epsl.2006.12.012 CrossRefGoogle Scholar
  37. Gansecki CA, Mahood GA, McWilliams MO (1996) 40Ar/39Ar geochronology of rhyolites erupted following collapse of the Yellowstone caldera, Yellowstone Plateau volcanic field: implications for crustal contamination. Earth Planet Sci Lett 142:91–107. doi: 10.1016/0012-821X(96)00088-X CrossRefGoogle Scholar
  38. Gelman SE, Gutiérrez FJ, Bachmann O (2013) On the longevity of large upper crustal silicic magma reservoirs. Geology 41:759–762. doi: 10.1130/G34241.1 CrossRefGoogle Scholar
  39. Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308:957–1039. doi: 10.2475/09.2008.01 Google Scholar
  40. Gualda GAR, Pamukcu AS, Ghiorso MS, Anderson AT, Sutton SR, Rivers ML (2012) Timescales of quartz crystallization and the longevity of the Bishop Giant Magma Body. PLOS One 7:e37492. doi: 10.1371/journal.pone.0037492 CrossRefGoogle Scholar
  41. Heiken G, McCoy F (1984) Caldera development during the Minoan eruption, Thira, Cyclades, Greece. J Geophys Res 89:8441–8462. doi: 10.1029/JB089iB10p08441 CrossRefGoogle Scholar
  42. Hildreth W (1981) Gradients in silicic magma chambers: Implications for lithospheric magmatism. J Geophys Res Solid Earth 86:10153–10192. doi: 10.1029/JB086iB11p10153 CrossRefGoogle Scholar
  43. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Miner Pet 98:455–489. doi: 10.1007/BF00372365 CrossRefGoogle Scholar
  44. Hildreth W, Wilson CJN (2007) Compositional zoning of the Bishop Tuff. J Pet 48:951–999. doi: 10.1093/petrology/egm007 CrossRefGoogle Scholar
  45. Huber C, Bachmann O, Dufek J (2011) Thermo-mechanical reactivation of locked crystal mushes: Melting-induced internal fracturing and assimilation processes in magmas. Earth Planet Sci Lett 304:443–454. doi: 10.1016/j.epsl.2011.02.022 CrossRefGoogle Scholar
  46. Huijsmans JPP (1985) Calc-alkaline lavas from the volcanic complex of Santorini, Aegean Sea, Greece. A petrological and stratigraphical study. (Ph.D.) Rijksuniversiteit te UtrechtGoogle Scholar
  47. Huijsmans JPP, Barton M (1989) Polybaric geochemical evolution of two shield volcanoes from Santorini, Aegean Sea, Greece: evidence for zoned magma chambers from cyclic compositional variations. J Pet 30:583–625. doi: 10.1093/petrology/30.3.583 CrossRefGoogle Scholar
  48. Huijsmans JPP, Barton M, Salters VJM (1988) Geochemistry and evolution of the calc-alkaline volcanic complex of Santorini, Aegean Sea, Greece. J Volcanol Geotherm Res 34:283–306. doi: 10.1016/0377-0273(88)90039-X CrossRefGoogle Scholar
  49. Karagianni EE, Papazachos CB, Panagiotopoulos DG, Suhadolc P, Vuan A, Panza GF (2005) Shear velocity structure in the Aegean area obtained by inversion of Rayleigh waves. Geophys J Int 160:127–143. doi: 10.1111/j.1365-246X.2005.02354.x CrossRefGoogle Scholar
  50. Keller J, Ryan WBF, Ninkovich D, Altherr R (1978) Explosive volcanic activity in the Mediterranean over the past 200,000 yr as recorded in deep-sea sediments. Geol Soc Am Bull 89:591–604. doi: 10.1130/0016-7606(1978)89<591:EVAITM>2.0.CO;2 CrossRefGoogle Scholar
  51. Klemetti EW, Deering CD, Cooper KM, Roeske SM (2011) Magmatic perturbations in the Okataina Volcanic Complex, New Zealand at thousand-year timescales recorded in single zircon crystals. Earth Planet Sci Lett 305:185–194. doi: 10.1016/j.epsl.2011.02.054 CrossRefGoogle Scholar
  52. Konstantinou KI (2010) Crustal rheology of the Santorini–Amorgos zone: implications for the nucleation depth and rupture extent of the 9 July 1956 Amorgos earthquake, southern Aegean. J Geodyn 50:400–409. doi: 10.1016/j.jog.2010.05.002 CrossRefGoogle Scholar
  53. Le Pichon X, Angelier J (1979) The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophys 60:1–42. doi: 10.1016/0040-1951(79)90131-8 CrossRefGoogle Scholar
  54. Lepage LD (2003) ILMAT: an Excel worksheet for ilmenite–magnetite geothermometry and geobarometry. Comput Geosci 29:673–678. doi: 10.1016/S0098-3004(03)00042-6 CrossRefGoogle Scholar
  55. Lindsay JM, Schmitt AK, Trumbull RB, Silva SLD, Siebel W, Emmermann R (2001) Magmatic evolution of the La Pacana caldera system, central Andes, Chile: compositional variation of two cogenetic, large-volume felsic ignimbrites. J Pet 42:459–486. doi: 10.1093/petrology/42.3.459 CrossRefGoogle Scholar
  56. Mann AC (1983) Trace element geochemistry of high alumina basalt–andesite–dacite–rhyodacite lavas of the Main Volcanic Series of Santorini Volcano, Greece. Contrib Miner Pet 84:43–57. doi: 10.1007/BF01132329 CrossRefGoogle Scholar
  57. Manning SW, Ramsey CB, Kutschera W, Higham T, Kromer B, Steier P, Wild EM (2006) Chronology for the Aegean Late Bronze Age 1700–1400 b.c. Science 312:565–569. doi: 10.1126/science.1125682 CrossRefGoogle Scholar
  58. Margari V, Pyle DM, Bryant C, Gibbard PL (2007) Mediterranean tephra stratigraphy revisited: results from a long terrestrial sequence on Lesvos Island, Greece. J Volcanol Geotherm Res 163:34–54. doi: 10.1016/j.jvolgeores.2007.02.002 CrossRefGoogle Scholar
  59. Martin VM (2005) Geochemical and textural analysis of mafic enclaves from Nea Kameni, Santorini, Greece (Ph.D.), University of CambridgeGoogle Scholar
  60. Martin VM, Davidson J, Morgan D, Jerram DA (2010) Using the Sr isotope compositions of feldspars and glass to distinguish magma system components and dynamics. Geology 38:539–542. doi: 10.1130/G30758.1 CrossRefGoogle Scholar
  61. Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on Earth. Bull Volcanol 66:735–748. doi: 10.1007/s00445-004-0355-9 CrossRefGoogle Scholar
  62. McKenzie D (1985) The extraction of magma from the crust and mantle. Earth Planet Sci Lett 74:81–91. doi: 10.1016/0012-821X(85)90168-2 CrossRefGoogle Scholar
  63. Mellors RA, Sparks RSJ (1991) Spatter-rich pyroclastic flow deposits on Santorini, Greece. Bull Volcanol 53:327–342. doi: 10.1007/BF00280225 CrossRefGoogle Scholar
  64. Miller CF, Wark DA (2008) Supervolcanoes and their explosive supereruptions. Elements 4:11–15. doi: 10.2113/GSELEMENTS.4.1.11 CrossRefGoogle Scholar
  65. Narcisi B, Vezzoli L (1999) Quaternary stratigraphy of distal tephra layers in the Mediterranean—an overview. Glob Planet Change 21:31–50. doi: 10.1016/S0921-8181(99)00006-5 CrossRefGoogle Scholar
  66. Nicholls IA (1971) Petrology of Santorini Volcano, Cyclades, Greece. J Pet 12:67–119. doi: 10.1093/petrology/12.1.67 CrossRefGoogle Scholar
  67. Nocquet J-M (2012) Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophys 579:220–242. doi: 10.1016/j.tecto.2012.03.037 CrossRefGoogle Scholar
  68. Papazachos BC, Karakostas VG, Papazachos CB, Scordilis EM (2000) The geometry of the Wadati-Benioff zone and lithospheric kinematics in the Hellenic arc. Tectonophys 319:275–300. doi: 10.1016/S0040-1951(99)00299-1 CrossRefGoogle Scholar
  69. Parks MM, Biggs J, England P, Mather TA, Nomikou P, Palamartchouk K, Papanikolaou X, Paradissis D, Parsons B, Pyle DM, Raptakis C, Zacharis V (2012) Evolution of Santorini Volcano dominated by episodic and rapid fluxes of melt from depth. Nat Geosci 5:749–754. doi: 10.1038/ngeo1562 CrossRefGoogle Scholar
  70. Petrelli M, Poli G, Perugini D, Peccerillo A (2005) PetroGraph: a new software to visualize, model, and present geochemical data in igneous petrology. Geochem Geophys Geosystems 6, Q07011. doi: 10.1029/2005GC000932 Google Scholar
  71. Pichler H, Friedrich W (1976) Radiocarbon dates of Santorini volcanics. Nature 262:373–374. doi: 10.1038/262373a0 CrossRefGoogle Scholar
  72. Pinel V, Jaupart C (2000) The effect of edifice load on magma ascent beneath a volcano. Philos Trans R Soc Lond Ser Math Phys Eng Sci 358:1515–1532. doi: 10.1098/rsta.2000.0601 CrossRefGoogle Scholar
  73. Pritchard ME, Simons M (2004) An InSAR-based survey of volcanic deformation in the central Andes. Geochem Geophys Geosystems 5, Q02002. doi: 10.1029/2003GC000610 Google Scholar
  74. Pyle DM (1990) New estimates for the volume of the Minoan eruption. In: Hardy DA, Keller J, Galanopoulos VP, Flemming NC, Druitt TH (eds) Thera Aegean World III. The Thera Foundation, London, pp 113–121Google Scholar
  75. Pyle DM, Elliott JR (2006) Quantitative morphology, recent evolution, and future activity of the Kameni Islands volcano, Santorini, Greece. Geosph 2:253–268. doi: 10.1130/GES00028.1 CrossRefGoogle Scholar
  76. Rasband WS (1997) Image J http://rsb.info.nih.gov/ij/. Accessed 18 Feb 2011
  77. Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Act 74:5349–5367. doi: 10.1016/j.gca.2010.06.017 CrossRefGoogle Scholar
  78. Renne PR, Balco G, Ludwig KR, Mundil R, Min K (2011) Response to the comment by W.H. Schwarz et al. on “Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P.R. Renne et al. (2010). Geochim Cosmochim Act 75:5097–5100. doi: 10.1016/j.gca.2011.06.021 CrossRefGoogle Scholar
  79. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Miner Pet 29:275–289. doi: 10.1007/BF00371276 CrossRefGoogle Scholar
  80. Ruch J, Manconi A, Zeni G, Solaro G, Pepe A, Shirzaei M, Walter TR, Lanari R (2009) Stress transfer in the Lazufre volcanic area, central Andes. Geophys Res Lett 36:L22303. doi: 10.1029/2009GL041276 CrossRefGoogle Scholar
  81. Scaillet S, Vita-Scaillet G, Guillou H (2008) Oldest human footprints dated by Ar/Ar. Earth Planet Sci Lett 275:320–325. doi: 10.1016/j.epsl.2008.08.026 CrossRefGoogle Scholar
  82. Scaillet S, Rotolo SG, La Felice S, Vita-Scaillet G (2011) High-resolution 40Ar/39Ar chronostratigraphy of the post-caldera (<20 ka) volcanic activity at Pantelleria, Sicily Strait. Earth Planet Sci Lett 309:280–290. doi: 10.1016/j.epsl.2011.07.009 CrossRefGoogle Scholar
  83. Schöpa A, Annen C (2013) The effects of magma flux variations on the formation and lifetime of large silicic magma chambers. J Geophys Res Solid Earth. doi: 10.1002/jgrb.50127 Google Scholar
  84. Schwarz M (2000) Tephrakorrelation im östlichen Mittelmeer (Meteor M40/4 Kerne). (Ph.D.) Albert-Ludwigs-Universität Freiburg i. BrGoogle Scholar
  85. Sigurdsson H, Carey S, Alexandri M, Vougioukalakis G, Croff K, Roman C, Sakellariou D, Anagnostou C, Rousakis G, Ioakim C, Gogou A, Ballas D, Misaridis T, Nomikou P (2006) Marine investigations of Greece’s Santorini volcanic field. Eos Trans Am Geophys Union 87:337–348. doi: 10.1029/2006EO340001 CrossRefGoogle Scholar
  86. Sisson TW, Bacon CR (1999) Gas-driven filter pressing in magmas. Geology 27:613–616. doi: 10.1130/0091-7613(1999)027<0613:GDFPIM>2.3.CO;2 CrossRefGoogle Scholar
  87. Smith RL (1979) Ash-flow magmatism. Geol Soc Am Spec Pap 180:5–28. doi: 10.1130/SPE180-p5 CrossRefGoogle Scholar
  88. Solano JMS, Jackson MD, Sparks RSJ, Blundy JD, Annen C (2012) Melt segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. J Pet 53:1999–2026. doi: 10.1093/petrology/egs041 CrossRefGoogle Scholar
  89. Sparks RSJ, Folkes CB, Humphreys MCS, Barfod DN, Clavero J, Sunagua MC, McNutt SR, Pritchard ME (2008) Uturuncu volcano, Bolivia: volcanic unrest due to mid-crustal magma intrusion. Am J Sci 308:727–769. doi: 10.2475/06.2008.01 CrossRefGoogle Scholar
  90. St Seymour K, Christanis K, Bouzinos A, Papazisimou S, Papatheodorou G, Moran E, Denes G (2004) Tephrostratigraphy and tephrochronology in the Philippi peat basin, Macedonia, Northern Hellas (Greece). Quat Int 121:53–65. doi: 10.1016/j.quaint.2004.01.023 CrossRefGoogle Scholar
  91. Stevenson DJ (1989) Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophys Res Lett 16:1067–1070. doi: 10.1029/GL016i009p01067 CrossRefGoogle Scholar
  92. Stormer JC (1983) The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides. Am Miner 68:586–594Google Scholar
  93. Sutton AN, Blake S, Wilson CJN, Charlier BLA (2000) Late Quaternary evolution of a hyperactive rhyolite magmatic system: Taupo volcanic centre, New Zealand. J Geol Soc 157:537–552. doi: 10.1144/jgs.157.3.537 CrossRefGoogle Scholar
  94. Thunell R, Federman A, Sparks S, Williams D (1979) The age, origin, and volcanological significance of the Y-5 ash layer in the Mediterranean. Quat Res 12:241–253. doi: 10.1016/0033-5894(79)90060-7 CrossRefGoogle Scholar
  95. Tirel C, Gueydan F, Tiberi C, Brun J-P (2004) Aegean crustal thickness inferred from gravity inversion. Geodynamical implications. Earth Planet Sci Lett 228:267–280. doi: 10.1016/j.epsl.2004.10.023 CrossRefGoogle Scholar
  96. Vaggelli G, Pellegrini M, Vougioukalakis G, Innocenti S, Francalanci L (2009) Highly Sr radiogenic tholeiitic magmas in the latest inter-Plinian activity of Santorini volcano, Greece. J Geophys Res 114, B06201. doi: 10.1029/2008JB005936 Google Scholar
  97. Vespa M, Keller J, Gertisser R (2006) Interplinian explosive activity of Santorini volcano (Greece) during the past 150,000 years. J Volcanol Geotherm Res 153:262–286. doi: 10.1016/j.jvolgeores.2005.12.009 CrossRefGoogle Scholar
  98. Vinci A (1985) Distribution and chemical composition of tephra layers from Eastern Mediterranean abyssal sediments. Mar Geol 64:143–155. doi: 10.1016/0025-3227(85)90165-3 CrossRefGoogle Scholar
  99. Wark DA, Hildreth W, Spear FS, Cherniak DJ, Watson EB (2007) Pre-eruption recharge of the Bishop magma system. Geology 35:235–238. doi: 10.1130/G23316A.1 CrossRefGoogle Scholar
  100. Wilson CJN, Charlier BLA (2009) Rapid rates of magma generation at contemporaneous magma systems, Taupo Volcano, New Zealand: insights from U–Th model-age spectra in Zircons. J Pet 50:875–907. doi: 10.1093/petrology/egp023 CrossRefGoogle Scholar
  101. Wulf S, Kraml M, Kuhn T, Schwarz M, Inthorn M, Keller J, Kuscu I, Halbach P (2002) Marine tephra from the Cape Riva eruption (22 ka) of Santorini in the Sea of Marmara. Mar Geol 183:131–141. doi: 10.1016/S0025-3227(01)00302-4 CrossRefGoogle Scholar
  102. Zellmer G, Turner S, Hawkesworth C (2000) Timescales of destructive plate margin magmatism: new insights from Santorini, Aegean volcanic arc. Earth Planet Sci Lett 174:265–281. doi: 10.1016/S0012-821X(99)00266-6 CrossRefGoogle Scholar
  103. Zellmer GF, Sparks RSJ, Hawkesworth CJ, Wiedenbeck M (2003) Magma emplacement and remobilization timescales beneath Montserrat: insights from Sr and Ba zonation in plagioclase phenocrysts. J Pet 44:1413–1431. doi: 10.1093/petrology/44.8.1413 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Clermont Université, Université Blaise PascalLaboratoire Magmas et VolcansClermont-FerrandFrance
  2. 2.CNRS, UMR 6524, LMVClermont-FerrandFrance
  3. 3.IRD, R 163, LMVClermont-FerrandFrance
  4. 4.Institut des Sciences de la Terre d’Orleans (ISTO)INSU-CNRS-Université d’OrleansOrleansFrance

Personalised recommendations