Bulletin of Volcanology

, 75:757 | Cite as

Soil CO2 flux baseline in an urban monogenetic volcanic field: the Auckland Volcanic Field, New Zealand

  • Agnès Mazot
  • Elaine R. Smid
  • Luitgard Schwendenmann
  • Hugo Delgado-Granados
  • Jan Lindsay
Collection: Monogenetic Volcanism
Part of the following topical collections:
  1. Topical Collection on Monogenetic Volcanism


The Auckland Volcanic Field (AVF) is a dormant monogenetic basaltic field located in Auckland, New Zealand. Though soil gas CO2 fluxes are routinely used to monitor volcanic regions, there have been no published studies of soil CO2 flux or soil gas CO2 concentrations in the AVF to date or many other monogenetic fields worldwide. We measured soil gas CO2 fluxes and soil gas CO2 concentrations in 2010 and 2012 in varying settings, seasons, and times of day to establish a baseline soil CO2 flux and to determine the major sources of and controlling influences on Auckland's soil CO2 flux. Soil CO2 flux measurements varied from 0 to 203 g m−2 day−1, with an average of 27.1 g m−2 day−1. Higher fluxes were attributed to varying land use properties (e.g., landfill). Using a graphical statistical approach, two populations of CO2 fluxes were identified. Isotope analyses of δ13CO2 confirmed that the source of CO2 in the AVF is biogenic with no volcanic component. These data may be used to assist with eruption forecasting in the event of precursory activity in the AVF, and highlight the importance of knowing land use history when assessing soil gas CO2 fluxes in urban environments.


Auckland Volcanic Field Soil gas CO2 flux Soil gas δ13CO2 Soil gas CO2 concentration Soil temperature Volcanic hazards Volcano monitoring 



The authors are grateful to Jo Hanley (Royal Society of New Zealand Primary Science Teaching Fellow), Tracy Howe, Madison Frank, Mary Anne Thompson, Jia Liu, Andrew Wheeler, and Karine Tan for field assistance. Thoughtful reviews by Deborah Bergfeld and an anonymous reviewer were most helpful in improving the manuscript. This work was carried out under the umbrella of the Determining Volcanic Risk in Auckland (DEVORA) project, which is financially supported by the Earthquake Commission and the Auckland Council.


  1. Allard P, Carbonnelle J, Dajlevic D et al (1991) Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351:387–391. doi: 10.1038/351387a0 CrossRefGoogle Scholar
  2. Allard P, Jean-Baptiste P, D'Allessandro W, Parello F, Parisi B, Flehoc C (1997) Mantle-derived helium and carbon in groundwaters and gases of Mount Etna, Italy. Earth Planet Sci Lett 148:501–516CrossRefGoogle Scholar
  3. Allen SR, Smith IEM (1994) Eruption styles and volcanic hazard in the Auckland Volcanic Field, New Zealand. Geosci Rep of Shizuoka Univ 20:5–14Google Scholar
  4. Allen SR, Bryner VF, Smith IEM, Ballance PF (1996) Facies analysis of pyroclastic deposits within basaltic tuff-rings of the Auckland volcanic field, New Zealand. New Zeal J Geol Geophys 39:309–327CrossRefGoogle Scholar
  5. Badalamenti B, Bruno N, Caltabiano T, Di Gangi F, Giammanco S, Salerno G (2004) Continuous soil CO2 and discrete plume SO2 measurements at Mt Etna (Italy) during 1997–2000: a contribution to volcano monitoring. Bull Volc 66:80–89. doi: 10.1007/s00445-003-0305-y CrossRefGoogle Scholar
  6. Barberi F, Carapezza ML (1994) Helium and CO2 soil-gas emission from Santorini (Greece). Bull Am Meteorol Soc 56(5):335–342. doi: 10.1007/BF00326460 Google Scholar
  7. Baubron JC, Allard P, Toutain JP (1991) Diffuse volcanic emission of carbon dioxide from Volcano Island, Italy. Nature 344:51–53. doi: 10.1038/344051a0 CrossRefGoogle Scholar
  8. Baubron JC, Rigo A, Toutain JP (2002) Soil gas profiles as a tool to characterise active tectonic areas: the Jaut Pass example (Pyrenees, France). Earth Planet Sci Lett 196:69–81. doi:  10.1016/S0012-821X(01)00596-9
  9. Bebbington M, Cronin S (2011) Spatio-temporal hazard estimation in the Auckland Volcanic Field New Zealand with a new event-order model. Bull Volc 73:55–72. doi: 10.1007/s00445-010-0403-6 CrossRefGoogle Scholar
  10. Bloomberg S, Rissmann C, Mazot A, Oze C, Horton T, Gravley D, Kennedy B, Werner C, Christenson B, Pawson J (2012) Soil gas flux exploration at the Rotokawa Geothermal field and White Island, New Zealand. In: Thirty-Sixth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, 30 Jan–1 FebGoogle Scholar
  11. Bogner JE, Spokas KA, Chanton JP (2011) Seasonal greenhouse gas emissions (methane, carbon dioxide, nitrous oxide) from engineered landfills: daily, intermediate, and final California cover soils. J Environ Qual 40(3):1010–1020CrossRefGoogle Scholar
  12. Bruno N, Caltabiano T, Giammanco S, Romano R (2001) Degassing of SO2 and CO2 at Mount Etna (Sicily) as an indicator of pre-eruptive ascent and shallow emplacement of magma. J Volcanol Geotherm Res 110:137–153. doi:  10.1016/S0377-0273(01)00201-3
  13. Carbonelle J, Zettwoog P (1982) Local and scattered emissions from active volcanoes: methodology and latest results on Etna and Stromboli. Bull 55, Programme Interdisciplinaire de Rech sur Prevision et la Surveillence des Eruptions Volcan, Cent Nat De la Rech Sci-Inst Nat Aston Et de Geophys, ParisGoogle Scholar
  14. Cardellini C, Chiodini G, Frondini F (2003) Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J Geophys Res 108(B9):2425–2437. doi: 10.1029/2002JB002165 CrossRefGoogle Scholar
  15. Cerling TE, Solomon DK, Quade J, Bowman JR (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55:3403–3405. doi:  10.1016/0016-7037(91)90498-T Google Scholar
  16. Chiodini G, Cioni R, Guidi M, Raco B, Marini L (1998) Soil CO2 flux measurements in volcanic and geothermal areas. App Geochem 13(5):543–552. doi:  10.1016/S0883-2927(97)00076-0 Google Scholar
  17. Chiodini G, Frondini F, Cardellini C, Granieri D, Marini L, Ventura G (2001) CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J Geophys Res 106(B8):16213–16221. doi: 10.1029/2001JB000246 CrossRefGoogle Scholar
  18. Chiodini G, Caliro S, Cardellini C, Avino R, Granieri D, Schmidt A (2008) Carbon isotopic composition of soil CO2 flux a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth Planet Sci Lett 274(3–4):372–379. doi: 10.1016/j.epsl.2008.07.051 CrossRefGoogle Scholar
  19. David M (1977) Geostatistical ore reserve estimation (Developments in geomathematics 2). Elsevier, New York, 363 ppGoogle Scholar
  20. Delgado-Granados H (2009) Use of CO2 emission from soils at monogenetic volcanic fields to identify potential zones for volcano birth. In: 250th Anniversary of Volcán Jorullo, Morelia, Mich. 27 de septiembre al 4 de octubre de 2009, Abstracts VolumeGoogle Scholar
  21. Delgado-Granados H (2013) Identifying the most active zones of monogenetic volcanic fields using CO2 emissions from soils: a way to forecast likely sites for volcano birth events? Bull Volc (in press)Google Scholar
  22. Delgado-Granados H, Villalpando-Cortes RE (2008) Método para pronosticar la localización de un nuevo volcán al sur de la ciudad de México. Tip Rev Espec Cienc Quím-Bìol 11(1):5–16 ISSN: 1405-888XGoogle Scholar
  23. Delgado-Granados H, Espinasa-Perena R, Rodriguez SR et al. (2011) Use of soil CO2 flux for the recognition of the most active zones in the Xalapa Monogenetic Volcanic Field. In: Eineder M, Brcic R, Adam N, Minet, C (eds) European Geosciences Union Gen Assem Conf Proc 13:EGU2011-12892.Google Scholar
  24. Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user's guide. Oxford University Press, New YorkGoogle Scholar
  25. Farrar C, Sorey M, Evans W, Howle J, Kerr B, Kennedy B, King C, Southon J (1995) Forest-killing diffuse CO2 emission Mammouth Mountain as a sign of magmatic unrest. Nature 376:675–678. doi: 10.1038/376675a0 CrossRefGoogle Scholar
  26. Francis T (2013) Soil gas geochemistry in the southern Hauraki Goldfield. Thesis, University of AucklandGoogle Scholar
  27. Finlayson J (1992) A soil gas survey over Rotorua geothermal field, Rotorua, New Zealand. Geothermics 21(1–2):181–195. doi: 10.1016/0375-6505(92)90076-L CrossRefGoogle Scholar
  28. Fu C-C, Yang TF, Walia V, Chen C-H (2005) Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan. Geochem J 39:427–439. doi: 10.2343/geochemj.39.427 CrossRefGoogle Scholar
  29. Gerlach T, Doukas M, McGee K, Kessler R (1998) Three-year decline of magmatic CO2 emission from soils of a Mammoth Mountain tree kill: Horseshoe Lake, CA 1995–1997. Geophys Res Lett 25:1947–1950. doi: 10.1029/98GL01298 CrossRefGoogle Scholar
  30. Giammanco S, Gurrieri M, Valenza S (1998) Anomalous soil CO2 degassing in relation to faults and eruptive fissures on Mount Etna (Sicily, Italy). Bull Volc 60:252–259. doi: 10.1007/s004450050231 CrossRefGoogle Scholar
  31. Giggenbach W, Matsuo S (1991) Evaluation of results from Second and Third IAVCEI field workshops on volcanic gases, Mt. Usu, Japan and White Island, New Zealand. Appl Geochem 6:125–141CrossRefGoogle Scholar
  32. Granieri D, Chiodini G, Marzocchi W, Avino R (2003) Continuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): influence of environmental and volcanic parameters. Earth Planet Sci Lett 212(1–2):167–179. doi: 10.1016/S0012-821X(03)00232-2 CrossRefGoogle Scholar
  33. Gunn J, Trudgill TS (1982) Carbon dioxide production and concentrations in the soil atmosphere; a case study from New Zealand volcanic ash soils. Catena Giessen 9:1–2. doi:  10.1016/S0341-8162(82)80007-6
  34. Hayward BW, Murdoch GM, Maitland G (2011) Volcanoes of Auckland: the essential guide. Auckland University Press, Auckland, New Zealand. ISBN 978-1-86940-479-6Google Scholar
  35. Heiligmann M, Stix J, Williams Jones G, Lollar BS, Garzon G (1997) Distal degassing of radon and carbon dioxide on Galeras volcano, Colombia. J Volcanol Geotherm Res 77(1–4):267–283. doi:  10.1016/S0377-0273(96)00099-6 Google Scholar
  36. Hernandez PA, Salazar JM, Shimoike Y, Mori T, Notsu K, Perez NM (2001) Diffuse emission of CO2 from Miyakejima volcano, Japan. Chem Geol 177:175–185. doi:  10.1016/S0009-2541(00)00390-9 Google Scholar
  37. Hinkle ME (1994) Environmental conditions affecting concentrations of He, CO2, O2, and N2 in soil gases. App Geochem 9:53–63. doi: 10.1016/0883-2927(94)90052-3
  38. Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. J Volcanol Geotherm Res 91: 97–120. doi:  10.1016/S0377-0273(99)00058-X
  39. Inguaggiato S, Jacome Paz MP, Mazot A, Delgado H., Inguaggiato C, Vita F (2012) CO2 output discharged from Stromboli Island (Italy). Chem Geol  10.1016/j.chemgeo.2012.10.008
  40. Kaye JP, McCulley RL, Burke IC (2005) Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob Chang Biol 11:575–587. doi: 10.1111/j.1365-2486.2005.00921.x CrossRefGoogle Scholar
  41. Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13(322–334):1958Google Scholar
  42. Kermode L (1992) Geol of the Auckland Urban Area. Lower Hutt, NZ Inst Geol Nucl Sci LtdGoogle Scholar
  43. Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50. doi: 10.1016/S1164-5563(01)01067-6 CrossRefGoogle Scholar
  44. Lindsay J, Marzocchi W, Jolly G, Constantinescu R, Jacopo S, Sandri L (2010) Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand National Disaster Exercise ‘Ruaumoko’. Bull Volc 72(2):185–204. doi: 10.1007/s00445-009-0311-9 CrossRefGoogle Scholar
  45. Lorenz K, Lal R (2009) Bioheochemical C and N cycles in urban soils. Environ Int 35:1–8. doi: 10.1016/j.envint.2008.05.006 CrossRefGoogle Scholar
  46. Magill CR, McAneney KJ, Smith IEM (2005) Probabilistic assessment of vent locations for the next Auckland volcanic field event. Math Geol 37(3):227–242. doi: 10.1007/s11004-005-1556-2 CrossRefGoogle Scholar
  47. Maljanen M, Martikainen PJ, Aaltonen H, Silvola J (2002) Short-term variation in fluxes of carbon dioxide nitrous oxide and methane in cultivated and forested organic boreal soils. Soil Biol Biochem 34:577–584. doi: 10.1016/S0038-0717(01)00213-9 CrossRefGoogle Scholar
  48. Marty B, Giggenbach WF (1990) Major and rare gases at White Island volcano, New Zealand: origin and flux of volatiles. Geophys Res Lett 17(3):247–250CrossRefGoogle Scholar
  49. Mori T, Hernández PA, Salazar JML, Pérez NM, Notsu K (2001) An in situ method for measuring CO2 flux from volcanic-hydrothermal fumaroles. Chem Geol 177(1–2):85–99. doi: 10.1016/S0009-2541(00)00384-3 CrossRefGoogle Scholar
  50. Németh K, Agustin-Flores J, Briggs R, Cronin SJ, Kereszturi G, Lindsay JM, Pittari A, Smith IEM (2012) Monogenetic volcanism of the South Auckland and Auckland Volcanic Fields, Fieldtrip guide, IAVCEI-CMV/CVS-IAS 4IMC Conference, Auckland, New ZealandGoogle Scholar
  51. Newton PCD, Bell CC, Clark H (1996) Carbon dioxide emissions from mineral springs in Northland and the potential of these sites for studying the effects of elevated carbon dioxide on pastures. N Z J Ag Res 39:33–40CrossRefGoogle Scholar
  52. NIWA Science (2000) Summary climate information for selected New Zealand locations. National Institute of Water and Atmospheric Research, Auckland, New ZealandGoogle Scholar
  53. Notsu K, Mori T, Do Vale SC, Kagi H, Ito K (2006) Monitoring quiescent volcanoes by diffuse CO2 degassing: case study of Mt Fuji, Japan. Pure App Geophys 163(4):825–835. doi: 10.1007/s00024-006-0051-0 CrossRefGoogle Scholar
  54. Raich JW, Tufekcioglu A (2000) Vegetation and soil respiration: correlations and controls. Biogeosciences 48:71–90. doi: 10.1023/A:1006112000616 Google Scholar
  55. Reimer GM (1980) Use of soil-gas helium concentrations for earthquake prediction: limitations imposed by diurnal variations. J Geophys Res 85B:3107–3114. doi: 10.1029/JB085iB06p03107 CrossRefGoogle Scholar
  56. Sandri L, Jolly G, Lindsay J, Howe T, Marzocchi W (2012) Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand. Bull Volc 74(3):705–723. doi: 10.1007/s00445-011-056-y CrossRefGoogle Scholar
  57. Sherburn S, Scott BJ, Olsen J, Miller CA (2007) Monitoring seismic precursors to an eruption from the Auckland Volcanic Field, New Zealand. N Z J Geol Geophys 50:1–11. doi: 10.1080/00288300709509814 CrossRefGoogle Scholar
  58. Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3:129–149. doi: 10.1016/0375-6742(74)90030-2 CrossRefGoogle Scholar
  59. Smith KA, Ball B, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791. doi: 10.1046/j.1365-2389.2003.00567.x CrossRefGoogle Scholar
  60. Smith IEM, Blake S, Wilson CJN, Houghton BF (2008) Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. Contrib Mineral Petrol 155(4):511–527. doi: 10.1007/s00410-007-0255-z CrossRefGoogle Scholar
  61. Thompson AJ, Hicks DL (2009) Vegetation Associated with Land Uses in the Auckland Region 2007. Prepared for Auckland Regional Council. Auckland Regional Council Document Type TR 2009/013Google Scholar
  62. Varley NR, Armienta MA (2001) The absence of diffuse degassing at Popocatépetl volcano, Mexico. Chem Geol 177(1–2):157–173. doi: 10.1016/S0009-2541(00)00389-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Agnès Mazot
    • 1
  • Elaine R. Smid
    • 2
  • Luitgard Schwendenmann
    • 2
  • Hugo Delgado-Granados
    • 3
  • Jan Lindsay
    • 2
  1. 1.GNS ScienceTaupoNew Zealand
  2. 2.School of EnvironmentUniversity of AucklandAucklandNew Zealand
  3. 3.Departamento de Vulcanología, Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoCiudad UniversitariaMéxicoMéxico

Personalised recommendations