Advertisement

Bulletin of Volcanology

, 75:749 | Cite as

Origin and ascent history of unusually crystal-rich alkaline basaltic magmas from the western Pannonian Basin

  • M. Éva JankovicsEmail author
  • Gábor Dobosi
  • Antal Embey-Isztin
  • Balázs Kiss
  • Tamás Sági
  • Szabolcs Harangi
  • Theodoros Ntaflos
Collection: Monogenetic Volcanism
Part of the following topical collections:
  1. Topical Collection on Monogenetic Volcanism

Abstract

The last eruptions of the monogenetic Bakony-Balaton Highland Volcanic Field (western Pannonian Basin, Hungary) produced unusually crystal- and xenolith-rich alkaline basalts which are unique among the alkaline basalts of the Carpathian–Pannonian Region. Similar alkaline basalts are only rarely known in other volcanic fields of the world. These special basaltic magmas fed the eruptions of two closely located volcanic centres: the Bondoró-hegy and the Füzes-tó scoria cone. Their uncommon enrichment in diverse crystals produced unique rock textures and modified original magma compositions (13.1–14.2 wt.% MgO, 459–657 ppm Cr, and 455–564 ppm Ni contents). Detailed mineral-scale textural and chemical analyses revealed that the Bondoró-hegy and Füzes-tó alkaline basaltic magmas have a complex ascent history, and that most of their minerals (∼30 vol.% of the rocks) represent foreign crystals derived from different levels of the underlying lithosphere. The most abundant xenocrysts, olivine, orthopyroxene, clinopyroxene, and spinel, were incorporated from different regions and rock types of the subcontinental lithospheric mantle. Megacrysts of clinopyroxene and spinel could have originated from pegmatitic veins/sills which probably represent magmas crystallized near the crust–mantle boundary. Green clinopyroxene xenocrysts could have been derived from lower crustal mafic granulites. Minerals that crystallized in situ from the alkaline basaltic melts (olivine with Cr-spinel inclusions, clinopyroxene, plagioclase, and Fe–Ti oxides) are only represented by microphenocrysts and overgrowths on the foreign crystals. The vast amount of peridotitic (most common) and mafic granulitic materials indicates a highly effective interaction between the ascending magmas and wall rocks at lithospheric mantle and lower crustal levels. However, fragments from the middle and upper crust are absent from the studied basalts, suggesting a change in the style (and possibly rate) of magma ascent in the crust. These xenocryst- and xenolith-rich basalts yield divers tools for estimating magma ascent rate that is important for hazard forecasting in monogenetic volcanic fields. According to the estimated ascent rates, the Bondoró-hegy and Füzes-tó alkaline basaltic magmas could have reached the surface within hours to few days, similarly to the estimates for other eruptive centres in the Pannonian Basin which were fed by “normal” (crystal and xenoliths poor) alkaline basalts.

Keywords

Alkaline basalt Ascent history Crystal rich Magma ascent rate Monogenetic volcanism Xenocryst Xenolith 

Notes

Acknowledgements

We are very grateful to R. V. Fodor for his valuable suggestions and comments as well as I. E. M. Smith for his useful advices which helped to improve the manuscript. This research was partly supported by the TÉT_10-1-2011-0694 project (Hungarian-Austrian Cooperation) and by the Hungarian Scientific Research Fund OTKA no. 68587. B. Kiss was funded in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program—Elaborating and operating an inland student and researcher personal support system convergence program” and was subsidized by the European Union and co-financed by the European Social Fund.

References

  1. Ancochea E, Munoz M, Sagredo J (1987) Las rocas volcánicas neógenas de Nuévalos (provincia de Zaragoza). Geogaceta 3:7–10Google Scholar
  2. Aoki K-i, Kushiro I (1968) Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contrib Mineral Petrol 18(4):326–337CrossRefGoogle Scholar
  3. Arai S, Abe N (1995) Reaction of orthopyroxene in peridotite xenoliths with alkali-basalt melt and its implication for genesis of alpine-type chromitite. Am Mineral 80:1041–1047Google Scholar
  4. Bada G, Horváth F (2001) On the structure and tectonic of the Pannonian Basin and surrounding orogens. Acta Geol Hung 44(2–3):301–327Google Scholar
  5. Balogh K, Pécskay Z (2001) K/Ar and Ar/Ar geochronological studies in the Pannonian–Carpathians–Dinarides (PANCARDI) region. Acta Geol Hung 44:281–299Google Scholar
  6. Balogh K, Árva-Sós E, Pécskay Z, Ravasz-Baranyai L (1986) K/Ar dating of post-Sarmatian alkali basaltic rocks in Hungary. Acta Mineral Petrogr Szeged 28:75–93Google Scholar
  7. Barton M, Bergen VMJ (1981) Green clinopyroxenes and associated phases in a potassium-rich lava from the Leucite Hills, Wyoming. Contrib Mineral Petrol 77(2):101–114CrossRefGoogle Scholar
  8. Best MG (2003) Igneous and metamorphic petrology. Blackwell, New YorkGoogle Scholar
  9. Binns RA, Duggan MB, Wilkinson JFG (1970) High pressure megacrysts in alkaline lavas from northeastern New South Wales. Am J Sci 269(2):132–168CrossRefGoogle Scholar
  10. Boudier F (1991) Olivine xenocrysts in picritic magmas: An experimental and microstructural study. Contrib Mineral Petrol 109(1):114–123CrossRefGoogle Scholar
  11. Bowen NL, Anderson O (1914) The binary system MgO–SiO2. Am J Sci 37:487–500CrossRefGoogle Scholar
  12. Brearley M, Scarfe CM (1986) Dissolution rates of upper mantle minerals in an alkali basalt melt at high pressure: an experimental study and implications for ultramafic xenolith survival. J Petrol 27(5):1157–1182CrossRefGoogle Scholar
  13. Brenna M, Cronin SJ, Smith IEM, Sohn YK, Németh K (2010) Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib Mineral Petrol 160(6):931–950CrossRefGoogle Scholar
  14. Brenna M, Cronin SJ, Németh K, Smith IEM, Sohn YK (2011) The influence of magma plumbing complexity on monogenetic eruptions, Jeju Island, Korea. Terra Nova, pp. 1–6Google Scholar
  15. Brooks CK, Printzlau I (1978) Magma mixing in mafic alkaline volcanic rocks: The evidence from relict phenocryst phases and other inclusions. J Volcanol Geotherm Res 4:315–331Google Scholar
  16. Carracedo J-C, Perez-Torrado F-J, Rodriguez-Gonzalez A, Fernandez-Turiel J-L, Klügel A, Troll VR, Wiesmaier S (2012) The ongoing volcanic eruption of El Hierro. Eos Trans AGU, Canary Islands, 93(9)Google Scholar
  17. Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 331–343Google Scholar
  18. Costa F, Cohmen R, Chakraborty S (2008) Time Scales of Magmatic Processes from Modeling the Zoning Patterns of Crystals. In: Putirka KD, Tepley III FJ (eds) Minerals, Inclusions and Volcanic Processes. Mineralogical Society of America & Geochemical Society, pp 545–594Google Scholar
  19. Csontos L, Nagymarosy A, Horváth F, Kovác M (1992) Tertiary evolution of the Intra-Carpathian area: a model. Tectonophysics 208(1–3):221–241CrossRefGoogle Scholar
  20. Daines MJ, Kohlstedt DL (1994) The transition from porous to channelized flow due to melt/rock reaction during melt migration. Geophys Res Lett 21(2):145–148CrossRefGoogle Scholar
  21. Deer WA, Howie RA, Zussman J (1978) Rock-forming minerals. Vol. 2A. Single-chain silicates, Longman, London, pp 3–4Google Scholar
  22. Dégi J, Abart R, Török K, Rhede D, Petrishcheva E (2009) Evidence for xenolith-host basalt interaction from chemical patterns in Fe-Ti-oxides from mafic granulite xenoliths of the Bakony-Balaton Volcanic field (W-Hungary). Mineral Petrol 95(3):219–234CrossRefGoogle Scholar
  23. Dobosi G (1989) Clinopyroxene zoning patterns in the young alkali basalts of Hungary and their petrogenetic significance. Contrib Mineral Petrol 101:112–121CrossRefGoogle Scholar
  24. Dobosi G, Fodor RV (1992) Magma fractionation, replenishment, and mixing as inferred from green-core clinopyroxenes in Pliocene basanite, southern Slovakia. Lithos 28(2):133–150CrossRefGoogle Scholar
  25. Dobosi G, Schultz-Güttler R, Kurat G, Kracher A (1991) Pyroxene chemistry and evolution of alkali basaltic rocks from Burgenland and Styria, Austria. Mineral Petrol 43(4):275–292CrossRefGoogle Scholar
  26. Dobosi G, Downes H, Embey-Isztin A, Jenner GA (2003) Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian Basin (Hungary). Neues Jahrbuch für Mineralogie-Abhandlungen 178(3):217–237CrossRefGoogle Scholar
  27. Downes H, Vaselli O (1995) The lithospheric mantle beneath the Carpathian–Pannonian Region: a review of trace element and isotopic evidence from ultramafic xenoliths. In: Downes H, Vaselli O (eds) Neogene and Related Magmatism in the Carpatho-Pannonian Region. Acta Vulcanologica, pp 219–229Google Scholar
  28. Downes H, Embey-Isztin A, Thirlwall MF (1992) Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle. Contrib Mineral Petrol 109(3):340–354CrossRefGoogle Scholar
  29. Duda A, Schmincke H-U (1985) Polybaric differentiation of alkali basaltic magmas: evidence from green-core clinopyroxenes (Eifel, FRG). Contrib Mineral Petrol 91(4):340–353CrossRefGoogle Scholar
  30. Ellis DJ (1976) High pressure cognate inclusions in the Newer Volcanics of Victoria. Contrib Mineral Petrol 58(2):149–180CrossRefGoogle Scholar
  31. Embey-Isztin A (1976) Amphibolite/lherzolite composite xenolith from Szigliget, north of the lake Balaton, Hungary. Earth Planet Sci Lett 31(2):297–304CrossRefGoogle Scholar
  32. Embey-Isztin A, Dobosi G (1995) Mantle source characteristics for Miocene-Pleistocene alkali basalts, Carpathian–Pannonian Region: a review of trace elements and isotopic composition. In: Downes H, Vaselli O (eds) Neogene and Related Magmatism in the Carpatho-Pannonian Region. Acta Vulcanologica, pp 155–166Google Scholar
  33. Embey-Isztin A, Scharbert HG, Dietrich H, Poultidis H (1989) Petrology and Geochemistry of peridotite xenoliths in alkali basalts from the transdanubian volcanic region, West Hungary. J Petrol 30(1):79–105CrossRefGoogle Scholar
  34. Embey-Isztin A, Scharbert HG, Dietrich H, Poultidis H (1990) Mafic granulites and clinopyroxenite xenoliths from the Transdanubian Volcanic Region (Hungary): implications for the deep structure of the Pannonian Basin. Mineral Mag 54:463–483CrossRefGoogle Scholar
  35. Embey-Isztin A, Dobosi G, James D, Downes H, Poultidis C, Scharbert HG (1993a) A compilation of new major, trace and isotope geochemical analyses of the young alkali basalts from the Pannonian Basin. Fragm Mineral Palaeontol 16:5–26Google Scholar
  36. Embey-Isztin A, Downes H, James DE, Upton BGJ, Dobosi G, Ingram GA, Harmon RS, Scharbert HG (1993b) The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. J Petrol 34:317–343CrossRefGoogle Scholar
  37. Embey-Isztin A, Dobosi G, Altherr R, Meyer H-P (2001a) Thermal evolution of the lithosphere beneath the western Pannonian Basin: evidence from deep-seated xenoliths. Tectonophysics 331(3):285–306CrossRefGoogle Scholar
  38. Embey-Isztin A, Downes H, Dobosi G (2001b) Geochemical characterization of the Pannonian Basin mantle lithosphere and asthenosphere: an overview. Acta Geol Hung 44(2–3):259–280Google Scholar
  39. Embey-Isztin A, Downes H, Kempton PD, Dobosi G, Thirlwall M (2003) Lower crustal granulite xenoliths from the Pannonian Basin, Hungary. Part 1: mineral chemistry, thermobarometry and petrology. Contrib Mineral Petrol 144:652–670CrossRefGoogle Scholar
  40. Fodor L, Csontos L, Bada G, Benkovics L, Györfi I (1999) Tertiary tectonic evolution of the Carpatho-Pannonian region: A new synthesis of palaeostress data. In: Durand B, Jolivet L, F. H, Séranne M (eds) The Mediterranean Basins: tertiary extension within the Alpine Orogen. Geological Society, London, Special Publications, pp 295–334Google Scholar
  41. Granet M, Wilson M, Achauer U (1995) Imaging a mantle plume beneath the French Massif Central. Earth Planet Sci Lett 136(3–4):281–296CrossRefGoogle Scholar
  42. Gurenko AA, Hansteen TH, Schmincke H-U (1996) Evolution of parental magmas of Miocene shield basalts of Gran Canaria (Canary Islands): constraints from crystal, melt and fluid inclusions in minerals. Contrib Mineral Petrol 124(3):422–435CrossRefGoogle Scholar
  43. Harangi S (2001) Volcanology and petrology of the Late Miocene to Pliocene alkali basaltic volcanism in the Western Pannonian Basin. In: Ádám A, Szarka L (eds) PANCARDI 2001 Field Guide. Sopron, pp 51–81Google Scholar
  44. Harangi S (2009) Volcanism of the Carpathian–Pannonian region, Europe: the role of subduction, extension and mantle plumes. In: http://www.mantleplumes.org/CarpathianPannonian.html
  45. Harangi S, Lenkey L (2007) Genesis of the Neogene to Quaternary volcanism in the Carpathian–Pannonian region: role of subduction, extension, and mantle plume. Geol Soc Am Spec Pap 418:67–92Google Scholar
  46. Harangi S, Sági T, Seghedi I, Ntaflos T (2013) A mineral-scale investigation to reveal the origin of the basaltic magmas of the Perşani monogenetic volcanic field, Romania, eastern-central Europe. LithosGoogle Scholar
  47. Hasenaka T, Carmichael ISE (1985) The cinder cones of Michoacán-Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. J Volcanol Geotherm Res 25(1–2):105–124CrossRefGoogle Scholar
  48. Hidas K, Falus G, Szabó C, Szabó PJ, Kovács I, Földes T (2007) Geodynamic implications of flattened tabular equigranular textured peridotites from the Bakony-Balaton Highland Volcanic Field (Western Hungary). J Geodyn 43(4–5):484–503CrossRefGoogle Scholar
  49. Hildner E, Kügel A, Hansteen TH (2012) Barometry of lavas from the 1951 eruption of Fogo, Cape Verde Islands: Implications for historic and prehistoric magma plumbing systems. J Volcanol Geotherm Res 217–218:73–90CrossRefGoogle Scholar
  50. Hirano N, Yamamoto J, Kagi H, Ishii T (2004) Young, olivine xenocryst-bearing alkali-basalt from the oceanward slope of the Japan Trench. Contrib Mineral Petrol 148(1):47–54CrossRefGoogle Scholar
  51. Hoernle K, Zhang YS, Graham D (1995) Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374:34–39CrossRefGoogle Scholar
  52. Horváth F (1993) Towards a mechanical model for the formation of the Pannonian Basin. Tectonophysics 226(1–4):333–357CrossRefGoogle Scholar
  53. Horváth F (1995) Phases of compression during the evolution of the Pannonian Basin and its bearing on hydrocarbon exploration. Mar Pet Geol 12(8):837–844CrossRefGoogle Scholar
  54. Horváth F, Cloetingh S (1996) Stress-induced late-stage subsidence anomalies in the Pannonian Basin. Tectonophysics 266(1–4):287–300CrossRefGoogle Scholar
  55. Irving AJ, Frey FA (1984) Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis. Geochim Cosmochim Acta 48(6):1201–1221CrossRefGoogle Scholar
  56. Jankovics É, Harangi S, Ntaflos T (2009) A mineral-scale investigation on the origin of the 2.6 Ma Füzes-tó basalt, Bakony-Balaton Highland Volcanic Field (Pannonian Basin, Hungary). Cent Eur Geol 52(2):97–124CrossRefGoogle Scholar
  57. Jankovics MÉ, Harangi S, Kiss B, Ntaflos T (2012) Open-system evolution of the Füzes-tó alkaline basaltic magma, western Pannonian Basin: constraints from mineral textures and compositions. Lithos 140–141:25–37CrossRefGoogle Scholar
  58. Jugovics L (1968) The Transdanubian basalt and basaltic tuff fields (in Hungarian). Yearly Report of the Hungarian Geological Institute about the year 1967, pp 75–82Google Scholar
  59. Jugovics L (1976) The chemical character of the Hungarian basalts (in Hungarian). Yearly report of the Hungarian Geological Institute about the year 1974, pp 431–470Google Scholar
  60. Jurewicz AJG, Watson EB (1988) Cations in olivine, part 2: diffusion in olivine xenocrysts, with applications to petrology and mineral physics. Contrib Mineral Petrol 99(2):186–201CrossRefGoogle Scholar
  61. Kereszturi G, Csillag G, Németh K, Sebe K, Balogh K, Jáger V (2010) Volcanic architecture, eruption mechanism and landform evolution of a Plio/Pleistocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton Highland Volcanic Field, Hungary. Cent Eur J Geosci 2(3):362–384CrossRefGoogle Scholar
  62. Klügel A (1998) Reactions between mantle xenoliths and host magma beneath La Palma (Canary Islands): constraints on magma ascent rates and crustal reservoirs. Contrib Mineral Petrol 131(2):237–257Google Scholar
  63. Klügel A, Hansteen TH, Galipp K (2005) Magma storage and underplating beneath Cumbre Vieja volcano, La Palma (Canary Islands). Earth Planet Sci Lett 236(1–2):211–226CrossRefGoogle Scholar
  64. Larsen LM, Pedersen AK (2000) Processes in high-Mg, high-T Magmas: evidence from olivine, chromite and glass in palaeogene picrites from West Greenland. J Petrol 41(7):1071–1098CrossRefGoogle Scholar
  65. Lasaga AC (1998) Kinetic theory in the earth sciences. Princeton University Press, Princeton, p 728Google Scholar
  66. Lenkey L, Dövényi P, Horváth F, Cloetingh S (2002) Geothermics of the Pannonian Basin and its bearing on the neotectonics. Eur Geophys Union Stephan Mueller Spec Publ 3:29–40CrossRefGoogle Scholar
  67. Lister JR, Kerr RC (1991) Fluid-mechanical models of crack propagation and their application to magma transport in dykes. J Geophys Res 96(B6):10049–10077CrossRefGoogle Scholar
  68. Maaloe S, Hansen B (1982) Olivine phenocrysts of Hawaiian olivine tholeiite and oceanite. Contrib Mineral Petrol 81(3):203–211CrossRefGoogle Scholar
  69. Martin U, Németh K (2005) Eruptive and depositional history of a Pliocene tuff ring that developed in a fluvio-lacustrine basin: Kissomlyó volcano (western Hungary). J Volcanol Geotherm Res 147(3–4):342–356CrossRefGoogle Scholar
  70. Martin U, Németh K, Auer A, Breitkreuz C (2003) Mio-Pliocene Phreatomagmatic Volcanism in a Fluvio-Lacustrine Basin in Western Hungary. Geolines 15:84–90Google Scholar
  71. Mattsson HB (2012) Rapid magma ascent and short eruption durations in the Lake Natron-Engaruka monogenetic volcanic field (Tanzania): a case study of the olivine melilititic Pello Hill scoria cone. J Volcanol Geotherm Res 247–248:16–25CrossRefGoogle Scholar
  72. McGee LE, Millet M-A, Smith IEM, Németh K, Lindsay JM (2012) The inception and progression of melting in a monogenetic eruption: Motukorea Volcano, the Auckland Volcanic Field, New Zealand. Lithos 155:360–374CrossRefGoogle Scholar
  73. Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550CrossRefGoogle Scholar
  74. Needham AJ, Lindsay JM, Smith IEM, Augustinus P, Shane PA (2011) Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 201(1–4):126–142CrossRefGoogle Scholar
  75. Németh K, Martin U (1999a) Large hydrovolcanic field in the Pannonian Basin: general characteristics of the Bakony-Balaton Highland Volcanic Field, Hungary. Acta Vulcanol 11(2):271–282Google Scholar
  76. Németh K, Martin U (1999b) Late Miocene paleo-geomorphology of the Bakony-Balaton Highland Volcanic Field (Hungary) using physical volcanology data. Z Geomorphol NF 43(4):417–438Google Scholar
  77. Reiners PW (2002) Temporal-compositional trends in intraplate basalt eruptions: Implications for mantle heterogeneity and melting processes. Geochemistry Geophysics Geosystems 3:1–30Google Scholar
  78. Righter K, Carmichael ISE (1993) Mega-xenocrysts in alkali olivine basalts: fragments of disrupted mantle assemblages. Am Mineral 78:1230–1245Google Scholar
  79. Roeder PL, Poustovetov A, Oskarsson N (2001) Growth forms and composition of chromian spinel in MORB magma: diffusion-controlled crystallization of chromian spinel. Can Mineral 39(2):397–416CrossRefGoogle Scholar
  80. Roeder PL, Thornber C, Poustovetov A, Grant A (2003) Morphology and composition of spinel in Pu’u ‘O’o lava (1996–1998), Kilauea volcano, Hawaii. J Volcanol Geotherm Res 123(3–4):245–265CrossRefGoogle Scholar
  81. Roeder P, Gofton E, Thornber C (2006) Cotectic proportions of olivine and spinel in olivine-tholeiitic basalt and evaluation of pre-eruptive processes. J Petrol 47(5):883–900CrossRefGoogle Scholar
  82. Rohrbach A, Schuth S, Ballhaus C, Münker C, Matveev S, Qopoto C (2005) Petrological constraints on the origin of arc picrites, New Georgia Group, Solomon Islands. Contrib Mineral Petrol 149(6):685–698CrossRefGoogle Scholar
  83. Ruprecht P, Bachmann O (2010) Pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes. Geology 38(10):919–922CrossRefGoogle Scholar
  84. Russell JK, Porritt LA, Lavallee Y, Dingwell DB (2012) Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481(7381):352–356CrossRefGoogle Scholar
  85. Sato H (1977) Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation. Lithos 10(2):113–120CrossRefGoogle Scholar
  86. Seghedi I, Downes H, Vaselli O, Szakács A, Balogh K, Pécskay Z (2004) Post-collisional Tertiary–Quaternary mafic alkalic magmatism in the Carpathian–Pannonian region: a review. Tectonophysics 393(1–4):43–62CrossRefGoogle Scholar
  87. Shane P, Gehrels M, Zawalna-Geer A, Augustinus P, Lindsay J, Chaillou I (2013) Longevity of a small shield volcano revealed by crypto-tephra studies (Rangitoto volcano, New Zealand): change in eruptive behavior of a basaltic field. J Volcanol Geotherm Res 257:174–183CrossRefGoogle Scholar
  88. Shaw CSJ (1999) Dissolution of orthopyroxene in basanitic magma between 0.4 and 2 GPa: further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths. Contrib Mineral Petrol 135(2):114–132CrossRefGoogle Scholar
  89. Shaw C, Dingwell D (2008) Experimental peridotite-melt reaction at one atmosphere: a textural and chemical study. Contrib Mineral Petrol 155(2):199–214CrossRefGoogle Scholar
  90. Shaw CSJ, Eyzaguirre J (2000) Origin of megacrysts in the mafic alkaline lavas of the West Eifel volcanic field, Germany. Lithos 50(1–3):75–95CrossRefGoogle Scholar
  91. Shaw CSJ, Thibault Y, Edgar AD, Lloyd FE (1998) Mechanisms of orthopyroxene dissolution in silica-undersaturated melts at 1 atmosphere and implications for the origin of silica-rich glass in mantle xenoliths. Contrib Mineral Petrol 132(4):354–370CrossRefGoogle Scholar
  92. Smith DR, Leeman WP (2005) Chromian spinel-olivine phase chemistry and the origin of primitive basalts of the southern Washington Cascades. J Volcanol Geotherm Res 140(1–3):49–66CrossRefGoogle Scholar
  93. Sparks RSJ, Pinkerton H, Macdonald R (1977) The transport of xenoliths in magmas. Earth Planet Sci Lett 35(2):234–238CrossRefGoogle Scholar
  94. Sparks RSJ, Baker L, Brown RJ, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamical constraints on kimberlite volcanism. J Volcanol Geotherm Res 155(1–2):18–48CrossRefGoogle Scholar
  95. Spera FJ (1984) Carbon dioxide in petrogenesis III: role of volatiles in the ascent of alkaline magma with special reference to xenolith-bearing mafic lavas. Contrib Mineral Petrol 88(3):217–232CrossRefGoogle Scholar
  96. Szabó C, Bodnar RJ (1996) Changing magma ascent rates in the Nógrád–Gömör volcanic field, Northern Hungary/Southern Slovakia: evidence from CO2-rich fluid inclusions in metasomatized upper mantle xenoliths. Petrology 4(3):221–230Google Scholar
  97. Szabó C, Falus G, Zajacz Z, Kovács I, Bali E (2004) Composition and evolution of lithosphere beneath the Carpathian–Pannonian Region: a review. Tectonophysics 393(1–4):119–137CrossRefGoogle Scholar
  98. Takada A (1994) The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism. J Geophys Res 99(B7):13563–13573CrossRefGoogle Scholar
  99. Tari G, Dövényi P, Horváth F, Dunkl I, Lenkey L, Stefanescu M, Szafián P, Tóth T (1999) Lithospheric structure of the Pannonian Basin derived from seismic, gravity and geothermal data. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean Basins: Tertiary extension within the Alpine orogen. Geological Society, Special Publication, London, pp 215–250Google Scholar
  100. Tracy RJ, Robinson P (1977) Zoned titanian augite in alkali olivine basalt from Tahiti and the nature of titanium substitutions in augite. Am Mineral 62(7–8):634–645Google Scholar
  101. Ulrych J, Ackerman L, Balogh K, Hegner E, Jelínek E, Pécskay Z, Přichystal A, Upton BGJ, Zimák J, Foltýnová R (2013) Plio-Pleistocene basanitic and melilititic series of the Bohemian Massif: K-Ar ages, major/trace element and Sr–Nd isotopic data. Chemie der Erde—Geochemistry. doi: 10.1016/j.chemer.2013.02.001
  102. Valentine GA, Krogh KEC (2006) Emplacement of shallow dikes and sills beneath a small basaltic volcanic center – The role of pre-existing structure (Paiute Ridge, southern Nevada, USA). Earth Planet Sci Lett 246(3–4):217–230CrossRefGoogle Scholar
  103. Walker GPL (1993) Basaltic-volcano systems. Geological Society, London, Special Publications 76(1):3–38Google Scholar
  104. Wass SY (1979) Multiple origins of clinopyroxenes in alkali basaltic rocks. Lithos 12(2):115–132CrossRefGoogle Scholar
  105. Wijbrans J, Németh K, Martin U, Balogh K (2007) 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. J Volcanol Geotherm Res 164(4):193–204CrossRefGoogle Scholar
  106. Yagi K, Onuma K (1967) The join CaMgSi2O6–CaTiAl2O6 and its bearing on the titanaugites. Journal of the Faculty of Science, Hokkaido University 13(4):463–483Google Scholar
  107. Zhang H-F (2005) Transformation of lithospheric mantle through peridotite-melt reaction: a case of Sino-Korean craton. Earth Planet Sci Lett 237(3–4):768–780CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Éva Jankovics
    • 1
    Email author
  • Gábor Dobosi
    • 2
    • 3
  • Antal Embey-Isztin
    • 4
  • Balázs Kiss
    • 1
    • 2
  • Tamás Sági
    • 1
  • Szabolcs Harangi
    • 1
    • 2
  • Theodoros Ntaflos
    • 5
  1. 1.Department of Petrology and GeochemistryEötvös Loránd UniversityBudapestHungary
  2. 2.MTA-ELTE Volcanology Research GroupBudapestHungary
  3. 3.Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth SciencesHungarian Academy of SciencesBudapestHungary
  4. 4.Department of Mineralogy and PetrologyHungarian Natural History MuseumBudapestHungary
  5. 5.Department of Lithospheric ResearchUniversity of ViennaViennaAustria

Personalised recommendations