Bulletin of Volcanology

, 75:742 | Cite as

Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function

  • Costanza Bonadonna
  • Antonio Costa
Research Article


The Weibull distribution between volume and square root of isopach area has been recently introduced for determining volume of tephra deposits, which is crucial to the assessment of the magnitude and hazards of explosive volcanoes. We show how the decay of the size of the largest lithics with the square root of isopleth area can also be well described using a Weibull function and how plume height correlates strongly with corresponding Weibull parameters. Variations of median grain size (Mdϕ) values with square root of area of the associated contours can be, similarly, well fitted with a Weibull function. Weibull parameters, derived for both the thinning of tephra deposits and the decrease of grain size (both maximum lithic diameter and Mdϕ), with a proxy for the distance from vent (e.g., square root of isoline areas) can be combined to classify the style of explosive volcanic eruptions. Accounting for the uncertainty in the derivation of eruptive parameters (e.g., plume height and volume of tephra deposits) is crucial to any classification of eruptive style and hazard assessment. Considering a typical uncertainty of 20 % for the determination of plume height, a new eruption classification scheme based on selected Weibull parameters is proposed. Ultraplinian, Plinian, Subplinian, and small–moderate explosive eruptions are defined on the ground of plume height and mass eruption rate. Overall, the Weibull fitting represents a versatile and reliable strategy for the estimation of both the volume of tephra deposits and the height of volcanic plumes and for the classification of eruptive style. Nonetheless, due to the typically large uncertainties (mainly due to availability of data, compilation of isopach and isopleth maps, and discrepancies from empirical best fits), plume height, volume, and magnitude of explosive eruptions cannot be considered as absolute values, regardless of the technique used. It is important that various empirical and analytical methods are applied in order to assess such an uncertainty.


Tephra Maximum clast Mdϕ Uncertainty Eruptive style Explosive eruptions 



The authors are grateful to L. Pioli and R. Cioni for discussion of an earlier version of the manuscript. A. Costa was funded by the Italian Dipartimento della Protezione Civile in the ambit of the Project “V1”, agreement INGV-DPC 2012–2013. R. Sulpizio, an anonymous reviewer and the Associate Editor J. Gardner are thanked for constructive comments that have improved the manuscript.

Supplementary material

445_2013_742_MOESM1_ESM.xlsx (168 kb)
445_2013_742_MOESM2_ESM.pdf (106 kb)
ESM 2 (PDF 105 KB)


  1. Ablay GJ, Ernst GGJ, Marti J, Sparks RSJ (1995) The similar-to-2 Ka Subplinian eruption of Montana-Blanca, Tenerife. Bull Volcanol 57(5):337–355Google Scholar
  2. Andronico D, Cristaldi A, Scollo S (2008a) The 4–5 September 2007 lava fountain at South-East Crater of Mt Etna, Italy. J Volcanol Geotherm Res 173(3–4):325–328CrossRefGoogle Scholar
  3. Andronico D, Scollo S, Caruso S, Cristaldi A (2008b) The 2002–03 Etna explosive activity: tephra dispersal and features of the deposits. J Geophys Res. doi: 10.1029/2007JB005126 Google Scholar
  4. Arrighi S, Principe C, Rosi M (2001) Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity. Bull Volcanol 63(2–3):126–150CrossRefGoogle Scholar
  5. Bertagnini A, Landi P, Santacroce R, Sbrana A (1991) The 1906 eruption of Vesuvius—from magmatic to phreatomagmatic activity through the flashing of a shallow depth hydrothermal system. Bull Volcanol 53(7):517–532CrossRefGoogle Scholar
  6. Biass S, Bonadonna C (2011) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73(1):73–90CrossRefGoogle Scholar
  7. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40(5):415–418CrossRefGoogle Scholar
  8. Bonadonna C, Costa A (2013) Modeling of tephra sedimentation from volcanic plumes. In: Fagents S, Gregg T, Lopes R (eds) Modeling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press, Cambridge, pp 173–202CrossRefGoogle Scholar
  9. Bonadonna C, Houghton BF (2005) Total grainsize distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456CrossRefGoogle Scholar
  10. Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res 108(B7):2340–2368CrossRefGoogle Scholar
  11. Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81(3–4):173–187CrossRefGoogle Scholar
  12. Bonadonna C, Phillips JC, Houghton BF (2005) Modeling tephra sedimentation from a Ruapehu weak plume eruption. J of Geophys Res. doi: 10.1029/2004JB003515 Google Scholar
  13. Bonadonna C, Genco R, Gouhier M, Pistolesi M, Cioni R, Alfano F, Hoskuldsson A, Ripepe M (2011) Tephra sedimentation during the 2010 Eyjafjallajokull eruption (Iceland) from deposit, radar, and satellite observations. J Geophys Res-Sol Ea. doi: 10.1029/2011JB008462 Google Scholar
  14. Bonadonna C, Cioni R, Pistolesi M, Connor CB, Scollo S, Pioli L, Rosi M (2013) Determination of the largest clast sizes of tephra deposits for the characterization of explosive eruptions: a study of the IAVCEI commission on tephra hazard modelling. B Volcanol. doi: 10.1007/s00445-012-0680-3 Google Scholar
  15. Bond A, Sparks RSJ (1976) The Minoan eruption of Santorini, Greece. J Geol Soc 132:1–16CrossRefGoogle Scholar
  16. Booth B, Croasdale R, Walker GPL (1978) A quantitative study of five thousand years of volcanism on Sao Miguel, Azores. Philos Trans R Soc Lond 288(1352):271–319CrossRefGoogle Scholar
  17. Branca S, Del Carlo P (2005) Types of eruptions of Etna volcano AD 1670–2003: implications for short-term eruptive behaviour. Bull Volcanol 67(8):732–742CrossRefGoogle Scholar
  18. Brown WK, Wohletz KH (1995) Derivation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and the lognormal distributions. J Appl Phys 78:2758–2763Google Scholar
  19. Bursik MI, Sparks RSJ, Gilbert JS, Carey SN (1992) Sedimentation of tephra by volcanic plumes: I. Theory and its comparison with a study of the Fogo A plinian deposit, Sao Miguel (Azores). Bull Volcanol 54:329–344CrossRefGoogle Scholar
  20. Carey SN, Sigurdsson H (1986) The 1982 eruptions of El Chichon volcano, Mexico (2): observations and numerical modelling of tephra-fall distribution. Bull Volcanol 48:127–141CrossRefGoogle Scholar
  21. Carey S, Sigurdsson H (1987) Temporal variations in column height and magma discharge rate during the 79 AD eruption of Vesuvius. Geol Soc Am Bull 99(2):303–314CrossRefGoogle Scholar
  22. Carey S, Sigurdsson H (1989) The intensity of Plinian eruptions. Bull Volcanol 51:28–40CrossRefGoogle Scholar
  23. Carey SN, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125CrossRefGoogle Scholar
  24. Cashman K (2004) Volatile controls on ascent and eruption. In: Sparks RSJ, Hawkesworth CJ (eds) The state of the planet: Frontiers and challenges in geophysics: American Geophysical Union Geophysical Monograph 150, pp. 109–124Google Scholar
  25. Cioni R, Sulpizio R (1998) Le sottopopolazioni granulometriche nei depositi vulcanici di caduta : l'eruzione delle pomici di Avellino (Vesuvio, Italia). Atti della societa toscana di scienze naturali residente in Pisa, memorie 105(serie A):81–97Google Scholar
  26. Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. J Volcanol Geotherm Res 178(3):331–346CrossRefGoogle Scholar
  27. Cioni R, Bertagnini A, Andronico D, Cole PD, Mundula F (2011) The 512 AD eruption of Vesuvius: complex dynamics of a small scale subplinian event. Bull Volcanol 73(7):789–810CrossRefGoogle Scholar
  28. Cole PD, Smith P, Komorowski JC, Alfano F, Bonadonna C, Stinton A, Christopher T, Odbert H, Loughlin S (2013, in press) Ash venting occurring both prior to and during lava extrusion at Soufrière Hills volcano, Montserrat, from 2005 to 2010. In: al. We (ed) The eruption of the Soufriere Hills Volcano, Montserrat, 2000–2010, Geological Society Memoir. Geological Society, LondonGoogle Scholar
  29. Costantini L, Bonadonna C, Houghton BF, Wehrmann H (2009) New physical characterization of the Fontana Lapilli basaltic Plinian eruption, Nicaragua. Bull Volcanol 71(3):337–355CrossRefGoogle Scholar
  30. de Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Deino A, di Cesare T, Di Vito MA, Fisher RV, Isaia R, Marotta E, Necco A, Ort M, Pappalardo L, Piochi M, Southon J (1999) The Agnano-Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91(2–4):269–301CrossRefGoogle Scholar
  31. Degruyter W, Bonadonna C (2012) Improving on mass flow rate estimates of volcanic eruptions. Geophys Res Lett. doi: 10.1029/2012GL052566 Google Scholar
  32. Di Vito MA, Arienzo I, Braia G, Civetta L, D'Antonio M, Di Renzo V, Orsi G (2011) The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei Caldera (Italy). Bull Volcanol 73(3):295–320CrossRefGoogle Scholar
  33. Eychenne J, Le Pennec J-L (2012) Sigmoidal particle density distribution in a subplinian scoria fall deposit. Bull Volcanol 74(10):2243–2249CrossRefGoogle Scholar
  34. Fierstein J, Hildreth W (1992) The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bull Volcanol 54:646–684CrossRefGoogle Scholar
  35. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167CrossRefGoogle Scholar
  36. Fierstein J, Nathenson M (1993) Another look at the calculation of fallout tephra volumes—reply. Bull Volcanol 55(5):375–378CrossRefGoogle Scholar
  37. Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, Berlin, p 472CrossRefGoogle Scholar
  38. Folch A, Costa A, Basart S (2012) Validation of the FALL3D ash dispersion model using observations of the 2010 Eyjafjallajokull volcanic ash clouds. Atmos Environ 48:165–183CrossRefGoogle Scholar
  39. Garcia O, Bonadonna C, Marti J, Pioli L (2012) The 5,660 yBP Boqueron explosive eruption, Teide-Pico Viejo complex, Tenerife. Bull Volcanol 74(9):2037–2050CrossRefGoogle Scholar
  40. Gonzalez-Mellado AO, De la Cruz-Reyna S (2010) A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios. Nat Hazard Earth Syst 10(11):2241–2257CrossRefGoogle Scholar
  41. Gudmundsson MT, Thordarson T, Hoskuldsson A, Larsen G, Bjornsson H, Prata FJ, Oddsson B, Magnusson E, Hognadottir T, Petersen GN, Hayward CL, Stevenson JA, Jonsdottir I (2012) Ash generation and distribution from the April–May 2010 eruption of Eyjafjallajokull. Scientific Reports, Iceland. doi: 10.1038/srep00572, 2Google Scholar
  42. Gurioli L, Harris AJL, Houghton BF, Polacci M, Ripepe M (2008) Textural and geophysical characterization of explosive basaltic activity at Villarrica volcano. J Geophys Res-Sol Ea. doi: 10.1029/2007JB005328 Google Scholar
  43. Gurioli L, Harris AJL, Colò L, Bernard J, Favalli M, Ripepe M, Andronico D (2013, in press) Classification, landing distribution, and associated flight parameters for a bomb field emplaced during a single major explosion at Stromboli, Italy. GeologyGoogle Scholar
  44. Hildreth W, Drake RE (1992) Volcano Quizapu, Chilean Andes. Bull Volcanol 54:93–125CrossRefGoogle Scholar
  45. Holasek RE, Self S, Woods AW (1996) Satellite observations and interpretation of the 1991 Mount Pinatubo eruption plumes. J Geophys Res-Sol Ea 101(B12):27635–27655CrossRefGoogle Scholar
  46. Houghton BF, Gonnermann HM (2008) Basaltic explosive volcanism: constraints from deposits and models. Chemie Der Erde-Geochemistry 68(2):117–140CrossRefGoogle Scholar
  47. Inman DL (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 22:125–145Google Scholar
  48. Koyaguchi T (1996) Volume estimation of tephra-fall deposits from the June 15, 1991, eruption of Mount Pinatubo by theoretical and geological methods. In: Newhall CG, Punongbayan RS (eds). Fire and mud. Seattle: University of Washington and Quezon City: Phivolcs, p 583–600Google Scholar
  49. Legros F (2000) Minimum volume of a tephra fallout deposit estimated from a single isopach. J Volcanol Geotherm Res 96:25–32Google Scholar
  50. Longchamp C, Bonadonna C, Bachmann O, Skopelitis A (2011) Characterization of tephra deposits with limited exposure: the example of the two largest explosive eruptions at Nisyros volcano (Greece). Bull Volcanol 73(9):1337–1352CrossRefGoogle Scholar
  51. Marchetti E, Ripepe M, Harris AJL, Delle Donne D (2009) Tracing the differences between Vulcanian and Strombolian explosions using infrasonic and thermal radiation energy. Earth Planet Sci Lett 279(3–4):273–281CrossRefGoogle Scholar
  52. Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on Earth. Bull Volcanol 66(8):735–748CrossRefGoogle Scholar
  53. Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186(1–2):10–21CrossRefGoogle Scholar
  54. Mueller S, Scheu B, Kueppers U, Spieler O, Richard D, Dingwell DB (2011) The porosity of pyroclasts as an indicator of volcanic explosivity. J Volcanol Geotherm Res 203(3–4):168–174CrossRefGoogle Scholar
  55. Newhall CG, Punongbayan RS (eds) (1996) Fire and mud—eruptions and lahars of Mount Pinatubo. Philippine Institute of Volcanology and Seismology and the University of Washington Press, Philippines, p 1126pGoogle Scholar
  56. Newhall CG, Self S (1982) The Volcanic Explosivity Index (VEI)—an estimate of explosive magnitude for historical volcanism. J Geophys Res Oceans Atm 87:1231–1238CrossRefGoogle Scholar
  57. Norini G, De Beni E, Andronico D, Polacci M, Burton M, Zucca F (2009) The 16 November 2006 flank collapse of the south-east crater at Mount Etna Italy: study of the deposit and hazard assessment. J Geophys Res-Sol Earth. doi: 10.1029/2008JB005779 Google Scholar
  58. Oddsson B, Gudmundsson MT, Larsen G, Karlsdottir S (2012) Monitoring of the plume from the basaltic phreatomagmatic 2004 Grimsvotn eruption—application of weather radar and comparison with plume models. Bull Volcanol 74(6):1395–1407CrossRefGoogle Scholar
  59. Patrick MR, Harris AJL, Ripepe M, Dehn J, Rothery DA, Calvari S (2007) Strombolian explosive styles and source conditions: insights from thermal (FLIR) video. Bull Volcanol 69(7):769–784CrossRefGoogle Scholar
  60. Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geo Res 140:273–294CrossRefGoogle Scholar
  61. Pioli L, Azzopardi BJ, Cashman KV (2009) Controls on the explosivity of scoria cone eruptions: magma segregation at conduit junctions. J Volcanol Geotherm Res 186(3–4):407–415CrossRefGoogle Scholar
  62. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51(1):1–15CrossRefGoogle Scholar
  63. Pyle DM (1990) New estimates for the volume of the Minoan eruption. In: Hardy DA (ed) Thera and the Aegean World. The Thera Foundation, London, pp 113–121Google Scholar
  64. Pyle DM (1995) Assessment of the minimum volume of tephra fall deposits. J Volcanol Geotherm Res 69(3–4):379–382CrossRefGoogle Scholar
  65. Pyle DM (1999) Widely dispersed Quaternary tephra in Africa. Global Planet Change 21:95–112CrossRefGoogle Scholar
  66. Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, New York, p 1417Google Scholar
  67. Ripepe M, Rossi M, Saccorotti G (1993) Image-processing of explosive activity at Stromboli. J Volcanol Geotherm Res 54(3–4):335–351CrossRefGoogle Scholar
  68. Rose WI (1993) Comment on another look at the calculation of fallout tephra volumes. Bull Volcanol 55(5):372–374CrossRefGoogle Scholar
  69. Rose WI, Durant AJ (2009) Fine ash content of explosive eruptions. J Volcanol Geotherm Res 186(1–2):32–39CrossRefGoogle Scholar
  70. Rosi M, Paladio-Melosantos ML, Di Muro A, Leoni R, Bacolcol T (2001) Fall vs flow activity during the 1991 climactic eruption of Pinatubo volcano (Philippines). Bull Volcanol 62:549–566CrossRefGoogle Scholar
  71. Rosi M, Pistolesi M, Bertagnini A, Landi P, Pompilio M, Di Roberto A (2013) Stromboli Volcano, Aeolian Islands (Italy): present eruptive activity and hazard. In: Lucchi F, Peccerillo A, Keller J, Tranne CA, Rossi PL (eds) Geology of the Aeolian Islands (Italy). Geological Society of London, Memoirs.Google Scholar
  72. Rust AC, Cashman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J Geophy Res-Sol Ea. doi: 10.1029/2011JB008494 Google Scholar
  73. Schneider D, Rose W, Coke L, Bluth G (1999) Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR. J Geophys Res 104(D4):4037–4050CrossRefGoogle Scholar
  74. Scollo S, Del Carlo P, Coltelli M (2007) Tephra fallout of 2001 Etna flank eruption: analysis of the deposit and plume dispersion. J Volcanol Geotherm Res 160(1–2):147–164CrossRefGoogle Scholar
  75. Self S, Sparks RSJ (1978) Characteristics of pyroclastic deposits formed by the interaction of silicic magma and water. Bulletin Volcanologique 41:196–212CrossRefGoogle Scholar
  76. Self S, Sparks RSJ, Booth B, Walker GPL (1974) 1973 Heimaey Strombolian scoria deposit, Iceland. Geol Mag 3(6):539–548CrossRefGoogle Scholar
  77. Self S, Rampino MR, Newton MS, Wolff JA (1984) Volcanological study of the great Tambora eruption of 1815. Geology 12(11):659–663CrossRefGoogle Scholar
  78. Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Philos Trans R Soc Lond 229:241–273Google Scholar
  79. Sparks RSJ, Bursik MI, Ablay GJ, Thomas RME, Carey SN (1992) Sedimentation of tephra by volcanic plumes. 2. Controls on thickness and grain-size variations of tephra fall deposits. Bull Volcanol 54(8):685–695CrossRefGoogle Scholar
  80. Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, Chichester, p 574Google Scholar
  81. Sulpizio R (2005) Three empirical methods for the calculation of distal volume of tephra-fall deposits. J Volcanol Geotherm Res 145(3–4):315–336CrossRefGoogle Scholar
  82. Sulpizio R, Cioni R, Di Vito MA, Mele D, Bonasia R, Dellino P (2010) The Pomici di Avellino eruption of Somma–Vesuvius (3.9 ka BP) part I: stratigraphy, compositional variability and eruptive dynamics. Bull Volcanol. doi: 10.1007/s00445-009-0339-x Google Scholar
  83. Thorarinsson S (1954) The eruptiom of Hekla 1947–1948. In: The tephra fall from Hekla. Vis Islendinga, Reykjavik, p 68Google Scholar
  84. Tsunematsu K (2012) New numerical solutions for the description of volcanic particle dispersal. PhD Dissertation; University of GenevaGoogle Scholar
  85. Volentik ACM, Bonadonna C, Connor CB, Connor LJ, Rosi M (2010) Modeling tephra dispersal in absence of wind: insights from the climactic phase of the 2450 BP Plinian eruption of Pululagua volcano (Ecuador). J Volcanol Geotherm Res 193(1–2):117–136CrossRefGoogle Scholar
  86. Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62:431–446CrossRefGoogle Scholar
  87. Walker GPL (1980) The Taupo Pumice: product of the most powerful known (Ultraplinian) eruption? J Volcanol Geotherm Res 8:69–94CrossRefGoogle Scholar
  88. Walker GPL (1981a) Characteristics of two phreatoplinian ashes, and their water-flushed origin. J Volcanol Geotherm Res 9:395–407CrossRefGoogle Scholar
  89. Walker GPL (1981b) The Waimihia and Hatepe plinian deposits from the rhyolitic Taupo Volcanic Centre. New Zeal J Geol Geop 24:305–324Google Scholar
  90. Walker GPL, Croasdale R (1971) Two plinian-type eruptions in the Azores. J Geol Soc Lond 127:17–55CrossRefGoogle Scholar
  91. Walker GPL, Self S, Wilson L (1984) Tarawera, 1886, New Zealand—a basaltic Plinian fissure eruption. J Volcanol Geotherm Res 21:61–78CrossRefGoogle Scholar
  92. Wehrmann H, Bonadonna C, Freundt A, Houghton BF, Kutterolf S (2006) Fontana tephra: a basaltic Plinian eruption in Nicaragua. Geological Society of America Special Paper 412: Volcanic Hazards in Central America. pp 209–223Google Scholar
  93. Williams SN, Self S (1983) The October 1902 Plinian eruption of Santa Maria volcano, Guatemala. J Volcanol Geotherm Res 16:33–56CrossRefGoogle Scholar
  94. Wilson L, Walker GPL (1987) Explosive volcanic-eruptions.6. Ejecta dispersal in Plinian eruptions—the control of eruption conditions and atmospheric properties. Geophys J Roy Astron Soc 89(2):657–679CrossRefGoogle Scholar
  95. Wright JV, Smith AL, Self S (1980) A working terminology of pyroclastic deposits. J Volcanol Geotherm Res 8(2–4):315–336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of GenevaGenevaSwitzerland
  2. 2.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di BolognaBolognaItaly

Personalised recommendations