Bulletin of Volcanology

, 75:740 | Cite as

Stratigraphy, sedimentology and eruptive mechanisms in the tuff cone of El Golfo (Lanzarote, Canary Islands)

  • Dario Pedrazzi
  • Joan Martí
  • Adelina Geyer
Research Article


The tuff cone of El Golfo on the western coast of Lanzarote (Canary Islands) is a typical hydrovolcanic edifice. Along with other edifices of the same age, it was constructed along a fracture oriented NEE–SWW that coincides with the main structural trend of recent volcanism in this part of the island. We conducted a detailed stratigraphic study of the succession of deposits present in this tuff cone and here interpret them in light of the depositional processes and eruptive dynamics that we were able to infer. The eruptive sequence is represented by a succession of pyroclastic deposits, most of which were emplaced by flow, plus a number of air-fall deposits and ballistic blocks and bombs. We distinguished five different eruptive/depositional stages on the basis of differences in inferred current flow regimes and fragmentation efficiencies represented by the resulting deposits; the different stages may be related to variations in the explosive energy. Eight lithofacies were identified based on sedimentary discontinuities, grain size, components, variations in primary laminations and bedforms. The volcanic edifice was constructed very rapidly around the vent, and this is inferred to have controlled the amount of water that was able to enter the eruption conduit. The sedimentological characteristics of the deposits and the nature and distribution of palagonitic alteration suggest that most of the pyroclastic succession in El Golfo was deposited in a subaerial environment. This type of hydrovolcanic explosive activity is common in the coastal zones of Lanzarote and the other Canary Islands and is one of the main potential hazards that could threaten the human population of this archipelago. Detailed studies of these hydrovolcanic eruptions such as the one we present here can help volcanologists understand the hazards that this type of eruption can generate and provide essential information for undertaking risk assessment in similar volcanic environments.


El Golfo Lanzarote Canary Islands Tuff cone Hydrovolcanism Facies analysis 



This research was partially funded by CTM2009-05919-E/ANT. The authors are grateful to the Cabildo of Lanzarote and the National Park of Timanfaya for giving permission to undertake this research, and to Orlando Hernandez (Casa de Los Volcanes-Cabildo de Lanzarote) for his assistance with the logistics. We are also grateful to the Editor James White, the Associated Editor Thorvaldur Thordarson and the reviewers Danilo Palladino, Karoly Németh and Christopher Hamilton for their constructive reviews of this manuscript.


  1. Abdel-Monem A, Watkins ND, Gast PW (1972) Potassium-argon ages, volcanic stratigraphy, and geomagnetic polarity history of the Canary Islands; Tenerife, La Palma and Hierro. Am J Sci 272(9):805–825CrossRefGoogle Scholar
  2. Araña V, Carracedo J (1978) Cañarían volcanoes: Gran Canaria. Editorial Rueda, Madrid:1–175Google Scholar
  3. Araña V, Hansen A, Martí J (1988) La caldera y el Pico de Vandama (Gran Canaria). Boletín Geológico y Minero T XCIX-I:47–58Google Scholar
  4. Arnott RWC, Hand BM (1989) Bedforms, primary structures and grain fabric in the presence of suspended sediment rain. J Sediment Petrol 59:1062–1069Google Scholar
  5. Baker E, Massoth G, de Ronde C, Lupton J, McInnes B (2002) Observations and sampling of an ongoing subsurface eruption of Kavachi volcano, Solomon Islands. Geology 30(11):975–978CrossRefGoogle Scholar
  6. Banda E, Dan¯obeitia JJ, Surin¯ach E, Ansorge J (1981) Features of crustal structure under the Canary Islands. Earth Planet Sci Lett 55(1):11–24CrossRefGoogle Scholar
  7. Belousov A, Belousova M (2001) Eruptive process, effects and deposits of the 1996 and the ancient basaltic phreatomagmatic eruptions in Karymskoye lake Kamchatka. Russia. Spec Publ int Assoc Sediment 30:35–60Google Scholar
  8. Brand BD, White CM (2007) Origin and stratigraphy of phreatomagmatic deposits at the Pleistocene Sinker Butte Volcano, Western Snake River Plain, Idaho. J Volcanol Geotherm Res 160(3–4):319–339CrossRefGoogle Scholar
  9. Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of London Memoirs, p 150Google Scholar
  10. Cas RAF, Wright JV (1987) Volcanic successions, modern and ancient. A geological approach to processes products and successions. Chapman and Hall, London, 528 ppGoogle Scholar
  11. Chough SK, Sohn YK (1990) Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology 37(6):1115–1135CrossRefGoogle Scholar
  12. Clarke H, Troll VR, Carracedo JC (2009) Phreatomagmatic to Strombolian eruptive activity of basaltic cinder cones: Montaña Los Erales, Tenerife, Canary Islands. J Volcanol Geotherm Res 180(2–4):225–245CrossRefGoogle Scholar
  13. Cole PD (1991) Migration direction of sand-wave structures in pyroclastic-surge deposits; implications for depositional processes. Geology 19(11):1108–1111CrossRefGoogle Scholar
  14. Cole PD, Guest J, Duncan A, Pacheco J (2001) Capelinhos 1957–1958, Faial, Azores: deposits formed by an emergent surtseyan eruption. Bull Volcanol 63(2):204–220CrossRefGoogle Scholar
  15. Cronin SJ, Bonte-Grapentin M, Nemeth K (2006) Samoa technical report—review of volcanic hazard maps for Savai'i and Upolu. EU-SOPAC, MUIR, Massey, New ZealandGoogle Scholar
  16. De La Nuez J, Alonso J, Quesada M, Macu M (1993) Edificios hidromagmáticos costeros de Tenerife (Islas Canarias). Rev Soc Geol España 6(1–2):47–59Google Scholar
  17. Dellino P, Isaia R, La Volpe L, Orsi G (2004a) Interaction between particles transported by fallout and surge in the deposits of the Agnano-Monte Spina eruption (Campi Flegrei, Southern Italy). J Volcanol Geotherm Res 133(1–4):193–210CrossRefGoogle Scholar
  18. Dellino P, Isaia R, Veneruso M (2004b) Turbulent boundary layer shear flows as an approximation of base surges at Campi Flegrei (Southern Italy). J Volcanol Geotherm Res 133(1–4):211–228CrossRefGoogle Scholar
  19. Druitt TH (1992) Emplacement of the 18 May 1980 lateral blast deposit ENE of Mount St. Helens, Washington. Bull Volcanol 54(7):554–572CrossRefGoogle Scholar
  20. Druitt TH (1998) Pyroclastic density currents. In: Gilbert, J.S., Sparks, R.S.J. (eds.), The physics of explosive volcanic eruptions. Geol Soc Spec Publ 145:145–182CrossRefGoogle Scholar
  21. Fisher RV (1977) Erosion by volcanic base-surge density currents: U-shaped channels. Geol Soc Am Bull 88(9):1287–1297CrossRefGoogle Scholar
  22. Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer–Verlag Inc, Berlin, p 474CrossRefGoogle Scholar
  23. Freundt A, Bursik M (1998) Pyroclastic flow transport mechanisms. In: Freundt A, Rosi M (eds) From magma to tephra, modeling physical processes of explosive volcanic eruptions, vol 4. Elsevier Science, Amsterdam, pp 173–231Google Scholar
  24. Fuster JM, Cendrbro A, Gastesi P, Ibarróla E, Ruiz JL (1968) Geología y volcanología de las islas Canarias: Tenerife. Instituto 'Lucas Mallada', CSIC, Madrid:218 ppGoogle Scholar
  25. Gudmundsson MT, Thordarson T, Höskuldsson Á, Larsen G, Björnsson H, Prata FJ, Oddsson B, Magnússon E, Högnadóttir T, Petersen GN, Hayward CL, Stevenson JA, Jónsdóttir I (2012) Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland. Sci. Rep. 2Google Scholar
  26. Heiken G, Wohletz K (1985) Volcanic ash. University of California Press, Berkeley, p 246Google Scholar
  27. Houghton BF, Hackett WR (1984) Strombolian and phreatomagmatic deposits of Ohakune craters, Ruapehu, New Zealand: a complex interaction between external water and rising basaltic magma. J Volcanol Geotherm Res 21(3–4):207–231CrossRefGoogle Scholar
  28. Huppert HE (1998) Quantitative modelling of granular suspension flows. Phil Trans R Soc Lond 356:2471–2496CrossRefGoogle Scholar
  29. (IMO) (Icelandic Meteorological Office)
  30. Ingram RL (1954) Terminology for the thickness of stratification and parting units in sedimentary rocks. Geol Soc Am Bull 65(9):937–938CrossRefGoogle Scholar
  31. Jude-Eton TC, Thordarson T, Gudmundsson MT, Oddsson B (2012) Dynamics, stratigraphy and proximal dispersal of supraglacial tephra during the ice-confined 2004 eruption at Grímsvötn Volcano, Iceland. Bull Volcanol 74(5):1057–1082CrossRefGoogle Scholar
  32. Kieffer S, Sturtevant B (1986) Erosional furrows formed during the lateral blast at Mount St. Helens, May 18, 1980: indicators of longitudinal vortices in the boundary layer. Abstr. Intl. Volcanol. Cong. New Zealand 53Google Scholar
  33. Kienle J, Kyle PR, Self S, Motyka RJ, Lorenz V (1980) Ukinrek Maars, Alaska, I. April 1977 eruption sequence, petrology and tectonic setting. J Volcanol Geotherm Res 7(1–2):11–37CrossRefGoogle Scholar
  34. Kokelaar BP (1983) The mechanism of surtseyan volcanism. J Geol Soc 140(6):939–944CrossRefGoogle Scholar
  35. Kokelaar BP (1986) Magma–water interactions in subaqueous and emergent basaltic volcanism. Bull Volcanol 48:275–289CrossRefGoogle Scholar
  36. Larsen G (2010) 3 Katla: Tephrochronology and eruption history. In: Anders Schomacker JK, Kurt HK (eds) Developments in Quaternary sciences. Elsevier, pp 23–49Google Scholar
  37. Larsen G, Guðmundsson M, Sigmarsson O (2009) Katla. In: Sólnes J et al (eds) Náttúruvá á Íslandi-Tekist á við náttúruöflin í 1100 ár. Eldgosavá. Viðlagatrygging Íslands, ReykjavíkGoogle Scholar
  38. Le Bas MJ, Rex DC, Stillman CJ (1986) The early magmatic chronology of Fuerteventura, Canary Islands. Geol Mag 123:287–298CrossRefGoogle Scholar
  39. Lorenz V (1974a) Studies of the Surtsey tephra deposits. Surtsey Res Prog Rep 7:72–79Google Scholar
  40. Lorenz V (1974b) Vesiculated tuffs and associated features. Sedimentology 21:273–291CrossRefGoogle Scholar
  41. Macdonald GA (1972) Volcanoes. Prentice-Hall, Inc, N.J, p 510Google Scholar
  42. Machado F, Parsons WH, Richards AF, Mulford JW (1962) Capelinhos eruption of Fayal Volcano, Azores, 1957–1958. J Geophys Res 67(9):3519–3529CrossRefGoogle Scholar
  43. Marinoni LB, Gudmundsson A (2000) Dykes, faults and palaeostresses in the Teno and Anaga massifs of Tenerife (Canary Islands). J Volcanol Geotherm Res 103(1–4):83–103CrossRefGoogle Scholar
  44. Marinoni LB, Pasquarè G (1994) Tectonic evolution of the emergent part of a volcanic ocean island: Lanzarote, Canary Islands. Tectonophysics 239(1–4):111–137CrossRefGoogle Scholar
  45. Martí J, Colombo F (1990) Estratigrafía, sedimentología y mecanismos eruptivos del edificio hidromagmático de El Golfo (Lanzarote). Bol Geol Min 101(4):560–579Google Scholar
  46. Mastin LG, Christiansen RL, Thornber C, Lowenstern J, Beeson M (2004) What makes hydromagmatic eruptions violent? Some insights from the Keanakāko'i Ash, Kı̄lauea Volcano, Hawai'i. J Volcanol Geotherm Res 137(1–3):15–31CrossRefGoogle Scholar
  47. Middleton G, Southard J (1978) Mechanics of sediment movement. Soc Econ Paleontol Mineral Short Course 3, Eastern Section: pp 6.37-36.41Google Scholar
  48. Moore J (1967) Base surge in recent volcanic eruptions. Bull Volcanol 30(1):337–363CrossRefGoogle Scholar
  49. Moore JG (1985) Structures and eruptive mechanisms at Surtsey Volcano, Iceland. Geol mag 122(6):649–661CrossRefGoogle Scholar
  50. Moore JG, Nakamura K, Alcaraz A (1966) The 1965 eruption of Taal Volcano. Science 151(3713):955–960CrossRefGoogle Scholar
  51. Morimoto R (1960) Submarine eruption of the Myôjin reef. Bull Volcanol 23(1):151–160CrossRefGoogle Scholar
  52. Németh K, Cronin SJ (2009) Volcanic structures and oral traditions of volcanism of Western Samoa (SW Pacific) and their implications for hazard education. J Volcanol Geotherm Res 186(3–4):223–237CrossRefGoogle Scholar
  53. Németh K, Cronin SJ (2011) Drivers of explosivity and elevated hazard in basaltic fissure eruptions: the 1913 eruption of Ambrym Volcano, Vanuatu (SW-Pacific). J Volcanol Geotherm Res 201(1–4):194–209CrossRefGoogle Scholar
  54. Robertson AHF, Stillman CJ (1979) Late Mesozoic sedimentary rocks of Fuerteventura, Canary Islands: implications for West African continental margin evolution. J Geol Soc 136(1):47–60CrossRefGoogle Scholar
  55. Schumacher R, Schmincke HU (1991) Internal structure and occurrence of accretionary lapilli—a case study at Laacher See Volcano. Bull Volcanol 53(8):612–634CrossRefGoogle Scholar
  56. Schumacher R, Schmincke HU (1995) Models for the origin of accretionary lapilli. Bull Volcanol 56(8):626–639Google Scholar
  57. Self S, Sparks R (1978) Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water. Bull Volcanol 41(3):196–212CrossRefGoogle Scholar
  58. Self S, Kienle J, Huot J-P (1980) Ukinrek Maars, Alaska, II. Deposits and formation of the 1977 craters. J Volcanol Geotherm Res 7(1–2):39–65CrossRefGoogle Scholar
  59. Sheridan MF, Wohletz KH (1981) Hydrovolcanic explosions: the systematics of water-pyroclast equilibration. Science 212:1387–1389CrossRefGoogle Scholar
  60. Sheridan MF, Wohletz KH (1983) Hydrovolcanism: basic considerations and review. J Volcanol Geotherm Res 17(1–4):1–29CrossRefGoogle Scholar
  61. Sohn YK (1996) Hydrovolcanic processes forming basaltic tuff rings and cones on Jeju Island, Korea. Geol Soc Am Bull 108:1199–1211CrossRefGoogle Scholar
  62. Sohn YK, Chough SK (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36(5):837–855CrossRefGoogle Scholar
  63. Sohn YK, Chough SK (1992) The Ilchulbong tuff cone, Cheju Island, South Korea: depositional processes and evolution of an emergent, surtseyan-type tuff cone. Sedimentology 39:523–544CrossRefGoogle Scholar
  64. Sohn YK, Park JB, Khim BK, Park KH, Koh GW (2003) Stratigraphy, petrochemistry and Quaternary depositional record of the Songaksan tuff ring, Jeju Island, Korea. J Volcanol Geotherm Res 119(1–4):1–20CrossRefGoogle Scholar
  65. Solgevik H, Mattsson HB, Hermelin O (2007) Growth of an emergent tuff cone: fragmentation and depositional processes recorded in the Capelas tuff cone, São Miguel, Azores. J Volcanol Geotherm Res 159(1):246–266CrossRefGoogle Scholar
  66. Sumner JM (1998) Formation of clastogenic lava flows during fissure eruption and scoria cone collapse: the 1986 eruption of Izu-Oshima Volcano, eastern Japan. Bull Volcanol 60(3):195–212CrossRefGoogle Scholar
  67. Thorarinsson S (1965) The Surtsey eruption: course of events and development of the new island. Surtsey Res Prog Rep 1:51–55Google Scholar
  68. Valentine GA (1987) Stratified flow in pyroclastic surges. Bull Volcanol 49(4):616–630CrossRefGoogle Scholar
  69. Valentine GA, Fisher RV (2000) Pyroclastic surges and blasts. In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of volcanoes. New York, Academic Press: 571–580Google Scholar
  70. Verwoerd WJ, Chevallier L (1987) Contrasting types of surtseyan tuff cones on Marion and Prince Edward islands, southwest Indian Ocean. Bull Volcanol 49(1):399–413CrossRefGoogle Scholar
  71. Waitt RB, Dzurisin D (1981) Devastating pyroclastic density flow and attendant air fall of May 18-Stratigraphy and sedimentology deposits. In: The 1980 eruptions of Mount St. Helens, Washington (ed. by P.W. Lipman & D.R. Mullineaux), Pap. US Geol. Surv. 1250 439–458Google Scholar
  72. Walker GPL (1984) Characteristics of dune-bedded pyroclastic surge bedsets. J Volcanol Geotherm Res 20(3–4):281–296CrossRefGoogle Scholar
  73. Waters AC, Fisher RV (1971) Base surges and their deposits: Capelinhos and Taal volcanoes. J Geophys Res 76(23):5596–5614CrossRefGoogle Scholar
  74. White JDL (1996) Impure coolants and interaction dynamics of phreatomagmatic eruptions. J Volcanol Geotherm Res 74(3–4):155–170CrossRefGoogle Scholar
  75. White JDL, Houghton B (2000) Surtseyan and related phreatomagmatic eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, 511, p 495Google Scholar
  76. White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201(1–4):1–29CrossRefGoogle Scholar
  77. White JDL, Schmincke H-U (1999) Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma (Canary Islands). J Volcanol Geotherm Res 94(1–4):283–304CrossRefGoogle Scholar
  78. Wohletz KH, Sheridan MF (1979) A model of pyroclastic surge. In: Chapin, C.E., Elston, W.E. (eds.). Geol Soc Am Spec Pap 180:177–194CrossRefGoogle Scholar
  79. Wohletz KH, Sheridan MF (1983) Hydrovolcanic explosions; II, Evolution of basaltic tuff rings and tuff cones. Am J Sci 283(5):385–413CrossRefGoogle Scholar
  80. Wohletz KH (1998) Pyroclastic surges and compressible two-phase flow. In: Freundt A, Rosi M (eds) From magma to tephra: modelling physical processes of explosive volcanic eruptions. Elsevier, AmsterdamGoogle Scholar
  81. Zanon V, Pacheco J, Pimentel A (2009) Growth and evolution of an emergent tuff cone: considerations from structural geology, geomorphology and facies analysis of São Roque volcano, São Miguel (Azores). J Volcanol Geotherm Res 180(2–4):277–291CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Group of VolcanologySIMGEO (UB-CSIC) Institute of Earth Sciences Jaume AlmeraBarcelonaSpain

Personalised recommendations