Advertisement

Bulletin of Volcanology

, 75:734 | Cite as

Evaluation of morphometry-based dating of monogenetic volcanoes—a case study from Bandas del Sur, Tenerife (Canary Islands)

  • Gábor KereszturiEmail author
  • Adelina Geyer
  • Joan Martí
  • Károly Németh
  • F. Javier Dóniz-Páez
Research Article

Abstract

Morphometry-based dating provides a first-order estimate of the temporal evolution of monogenetic volcanic edifices located within an intraplate monogenetic volcanic field or on the flanks of a polygenetic volcano. Two widely used morphometric parameters, namely cone height/width ratio (H max/W co) and slope angle, were applied to extract chronological information and evaluate their accuracy for morphometry-based ordering. Based on these quantitative parameters extracted from contour-based Digital Elevation Models (DEMs), two event orders for the Bandas del Sur in Tenerife (Canary Islands) were constructed and compared with the existing K-Ar, paleomagnetic and stratigraphic data. The results obtained suggest that the commonly used H max/W co ratio is not reliable, leading to inappropriate temporal order estimates, while the slope angle gives slightly better results. The overall performance of such descriptive parameters was, however, generally poor (i.e. there is no strong correlation between morphometry and age). The geomorphic/morphometric mismatches could be the result of (1) the diversity of syn-eruptive processes (i.e. diverse initial morphologies causing geomorphic/morphometric variability), (2) contrasting, edifice-specific degradation that depends partly upon the inner facies architecture of the volcanic edifices, (3) various external environmental controls (e.g. tephra mantling from pyroclastic density currents unrelated to the edifice evaluated) and (4) differences in the scale/resolution of input data. The observed degradation trend and changes in morphometric parameters over time do not support a simple degradation model for monogenetic scoria cones volcanoes.

Keywords

Scoria cone Cinder cone Phreatomagmatism Monogenetic Volcanic chain Slope angle Digital Elevation Model (DEM) Height width ratio 

Notes

Acknowledgements

GK would like to thank to the PhD Research Fellowship offered by the Volcanic Risk Solutions group, Institute of Agriculture and Environment at Massey University (New Zealand). This research was also partly supported by Department of Geology and Mineral Deposits, University of Miskolc (Hungary). AG is grateful for her Juan de la Cierva Grant (JCI-2010-06092). JM is grateful to the MICINN grant CGL2008-04264. Comments by Benjamin van Wyk de Vries, James D.L. White and by two anonymous reviewers are thanked. Unofficial reviews of the early manuscript by Adrian Pittari, Donald Hooper and Kate Arentsen significantly improved the quality of the text.

Supplementary material

445_2013_734_MOESM1_ESM.docx (21 kb)
ESM 1 (DOCX 20 kb)
445_2013_734_MOESM2_ESM.xls (38 kb)
ESM 2 (XLS 38 kb)
445_2013_734_MOESM3_ESM.xls (46 kb)
ESM 3 (XLS 45 kb)
445_2013_734_MOESM4_ESM.xls (62 kb)
ESM 4 (XLS 62 kb)
445_2013_734_MOESM5_ESM.xls (39 kb)
ESM 5 (XLS 39.0 kb)

References

  1. Ablay GJ, Martí J (2000) Stratigraphy, structure, and volcanic evolution of the Pico Teide–Pico Viejo formation, Tenerife, Canary Islands. J Volcanol Geotherm Res 103(1–4):175–208CrossRefGoogle Scholar
  2. Aguirre-Díaz GJ, Jaimes-Viera MC, Nieto-Obregón J (2006) The Valle de Bravo Volcanic Field: geology and geomorphometric parameters of a Quaternary monogenetic field at the front of the Mexican Volcanic Belt. Geol Soc Am Spec Pap 402:139–154Google Scholar
  3. Ancochea E, Fuster JM, Ibarrola E, Cendrero A, Coello J, Hernan F, Cantagrel JM, Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. J Volcanol Geotherm Res 44(3–4):231–249CrossRefGoogle Scholar
  4. Bemis K, Walker J, Borgia A, Turrin B, Neri M, Swisher C III (2011) The growth and erosion of cinder cones in Guatemala and El Salvador: models and statistics J. Volcanol Geotherm Res 201(1–4):39–52CrossRefGoogle Scholar
  5. Bertotto GW, Bjerg EA, Cingolani CA (2006) Hawaiian and Strombolian style monogenetic volcanism in the extra-Andean domain of central-west Argentina. J Volcanol Geotherm Res 158(3–4):430–444CrossRefGoogle Scholar
  6. Blanco-Montenegro I, Nicolosi I, Pignatelli A, García A, Chiappini M (2011) New evidence about the structure and growth of ocean island volcanoes from aeromagnetic data: the case of Tenerife, Canary Islands. J Geophys Res 116(B03102)Google Scholar
  7. Bloomfield K (1975) A late-Quaternary monogenetic volcano field in central Mexico. Geol Rundsch 64(1):476–497CrossRefGoogle Scholar
  8. Bohnenstiehl DR, Howell JK, White SM, Hey RN (2012) A modified basal outlining algorithm for identifying topographic highs from gridded elevation data, part 1: motivation and methods. Comput. Geosci 49:308-314Google Scholar
  9. Bolstad PV, Stowe T (1994) An evaluation of DEM accuracy: elevation, slope and aspect. Photogramm Eng Remote Sens 60:1327–1332Google Scholar
  10. Brown RJ, Barry TL, Branney MJ, Pringle MS, Bryan SE (2003) The Quaternary pyroclastic succession of southern Tenerife, Canary Islands: explosive eruptions, related subsidence and sector collapse. Geol Mag 140:265–288CrossRefGoogle Scholar
  11. Broz P, Hauber E (2012) A unique volcanic field in Tharsis, Mars: pyroclastic cones as evidence for explosive eruptions. Icarus 218:88–99CrossRefGoogle Scholar
  12. Bryan SE, Marti J, Cas RAF (1998) Stratigraphy of the Bandas del Sur Formation; an extracaldera record of Quaternary phonolitic explosive eruptions from the Las Canadas edifice, Tenerife (Canary Islands). Geol Mag 135(5):605–636CrossRefGoogle Scholar
  13. Carmona J, Romero C, Dóniz J, García A (2011) Characterization and facies analysis of the hydrovolcanic deposits of Montaña Pelada tuff ring: Tenerife, Canary Islands. J Afr Earth Sci 59(1):41–50CrossRefGoogle Scholar
  14. Carn SA (2000) The Lamongan volcanic field, East Java, Indonesia: physical volcanology, historic activity and hazards. J Volcanol Geotherm Res 95:81–108CrossRefGoogle Scholar
  15. Carracedo JC, Paterne M, Guillou H, Perez-Torrado FJ, Paris R (2003) Dataciones radiometricas (14CYK/Ar) del Teide y el rift nordoeste, Tenerife, Islas Canarias. Estudios Geologicos 59:15–29Google Scholar
  16. Carracedo JC, Rodríguez Badiola E, Guillou H, Paterne M, Scaillet S, Pérez Torrado FJ, Paris R, Fra-Paleo U, Hansen A (2007) Eruptive and structural history of Teide Volcano and rift zones of Tenerife Canary Islands. Geol Soc Am Bull 119(9):1027–1051CrossRefGoogle Scholar
  17. Clarke H, Troll VR, Carracedo JC, Byrne K, Gould R (2005) Changing eruptive styles and textural features from phreatomagamatic to strombolian activity of basaltic littoral cones: Los Erales cinder cone, Tenerife, Canary Islands. Estudios Geologicos 61:121–134CrossRefGoogle Scholar
  18. Clarke H, Troll VR, Carracedo JC (2009) Phreatomagmatic to Strombolian eruptive activity of basaltic cinder cones: Montaña Los Erales, Tenerife Canary Islands. J Volcanol Geotherm Res 180(2–4):225–245CrossRefGoogle Scholar
  19. Colton HS (1967) The basaltic cinder cones and lava flows of the San Francisco Mountain Volcanic Field. Museum of Northern Arizona Bulletin 10 (revised edition):1–58Google Scholar
  20. Conway FM, Connor CB, Hill BE, Condit CD, Mullaney K, Hall CM (1998) Recurrence rates of basaltic volcanism in SP cluster, San Francisco volcanic field, Arizona. Geology 26(7):655–658CrossRefGoogle Scholar
  21. Corazzato C, Tibaldi A (2006) Fracture control on type, morphology and distribution of parasitic volcanic cones: an example from Mt. Etna, Italy. J Volcanol Geotherm Res 158(1–2):177–194CrossRefGoogle Scholar
  22. de’ Michieli Vitturi M, Arrowsmith JR (2013) Two dimensional nonlinear diffusive numerical simulation of geomorphic modifications to cinder cones. Earth Surf. Processes Landforms:doi:  10.1002/esp.3423
  23. Di Traglia F, Cimarelli C, de Rita D, Gimeno Torrente D (2009) Changing eruptive styles in basaltic explosive volcanism: examples from Croscat complex scoria cone, Garrotxa Volcanic Field (NE Iberain Peninsula). J Volcanol Geotherm Res 180(2–4):89–109CrossRefGoogle Scholar
  24. Dohrenwend JC, Wells SG, Turrin BD (1986) Degradation of Quaternary cinder cones in the Cima volcanic field, Mojave Desert California. Geol Soc Am Bull 97(4):421–427CrossRefGoogle Scholar
  25. Doniz J, Romero C, Coello E, Guillen C, Sanchez N, Garcia-Cacho L, Garcia A (2008) Morphological and statistical characterisation of recent mafic volcanism on Tenerife (Canary Islands, Spain). J Volcanol Geotherm Res 173(3–4):185–195CrossRefGoogle Scholar
  26. Dóniz-Páez J (2004) Geomorphology of the cinder cones from Tenerife island. In, Ph.D. Thesis, Department of Geography, University of La Laguna, Tenerife, Spain. (in Spanish)Google Scholar
  27. Edgar CJ, Wolff JA, Olin PH, Nichols HJ, Pittari A, Cas RAF, Reiners PW, Spell TL, Martí J (2007) The late Quaternary Diego Hernandez Formation Tenerife: volcanology of a complex cycle of voluminous explosive phonolitic eruptions. J Volcanol Geotherm Res 160(1–2):59–85CrossRefGoogle Scholar
  28. Favalli M, Karátson D, Mazzarini F, Pareschi MT, Boschi E (2009) Morphometry of scoria cones located on a volcano flank: a case study from Mt. Etna (Italy), based on high-resolution LiDAR data. J Volcanol Geotherm Res 186(3–4):320–330CrossRefGoogle Scholar
  29. Fornaciai A, Favalli M, Karátson D, Tarquini S, Boschi E (2012) Morphometry of scoria cones, and their relation to geodynamic setting: a DEM-based analysis. J Volcanol Geotherm Res 217–218:56–72CrossRefGoogle Scholar
  30. Geyer A, Martí J (2010) The distribution of basaltic volcanism on Tenerife, Canary Islands: implications on the origin and dynamics of the rift systems. Tectonophysics 483(3–4):310–326CrossRefGoogle Scholar
  31. Gilichinsky M, Melnikov D, Melekestsev I, Zaretskaya N, Inbar M (2010) Morphometric measurements of cinder cones from digital elevation models of Tolbachik volcanic field, central Kamchatka. Can J Remote Sens 36(4):287–300CrossRefGoogle Scholar
  32. Gisbert G, Gimeno D, Fernandez-Turiel J-L (2009) Eruptive mechanisms of the Puig De La Garrinada volcano (Olot, Garrotxa volcanic field, Northeastern Spain): a methodological study based on proximal pyroclastic deposits. J Volcanol Geotherm Res 180(2–4):259–276CrossRefGoogle Scholar
  33. Grosse P, van Wyk de Vries B, Petrinovic IA, Euillades PA, Alvarado GE (2009) Morphometry and evolution of arc volcanoes. Geology 37(7):651–654CrossRefGoogle Scholar
  34. Grosse P, van Wyk de Vries B, Euillades PA, Kervyn M, Petrinovic I (2012) Systematic morphometric characterization of volcanic edifices using digital elevation models. Geomorphology 136:114–131CrossRefGoogle Scholar
  35. Guilbaud M-N, Siebe C, Agustín-Flores J (2009) Eruptive style of the young high-Mg basaltic-andesite Pelagatos scoria cone, southeast of México City. Bull Volcanol 71(8):859–880CrossRefGoogle Scholar
  36. Guilbaud M-N, Siebe C, Layer P, Salinas S (2012) Reconstruction of the volcanic history of the Tacámbaro-Puruarán area (Michoacán, México) reveals high frequency of Holocene monogenetic eruptions. Bull Volcanol 74(5):1187–1211CrossRefGoogle Scholar
  37. Gutmann JT (1979) Structure and eruptive cycle of cinder cones in the Pinacate volcanic field and controls of Strombolian activity. J Geol 87:448–454CrossRefGoogle Scholar
  38. Hasenaka T, Carmichael ISE (1985a) The cinder cones of Michoacán-Guanajuato central Mexico: their age, volume and distribution, and magma discharge rate. J Volcanol Geotherm Res 25(1–2):105–124CrossRefGoogle Scholar
  39. Hasenaka T, Carmichael ISE (1985b) A compilation of location, size, and geomophological parameters of volcanoes of the Michoacan-Guanajuato volcanic field, central Mexico. Geofisica Internacional 24(4):577–607Google Scholar
  40. Hooper DM (1995) Computer-simulation models of scoria cone degradation in the Colima and Michoacán-Guanajuato volcanic fields, Mexico. Geofisica Internacional 34(3):321–340Google Scholar
  41. Hooper DM, Sheridan MF (1998) Computer-simulation models of scoria cone degradation. J Volcanol Geotherm Res 83(3–4):241–267CrossRefGoogle Scholar
  42. Howell JK, White SM, Bohnenstiehl DR (2012) A modified basal outlining algorithm for identifying topographic highs in gridded elevation data, part 2: application to Springerville Volcanic Field. Comput Geosci 49:315–322CrossRefGoogle Scholar
  43. IGME (2003) Mapa Geológico de Canarias (1:25.000). Instituto Geológico y Minero de EspañaGoogle Scholar
  44. Inbar M, Risso C (2001) A morphological and morphometric analysis of a high density cinder cone volcanic field—Payun Matru, south-central Andes, Argentina. Z Geomorphol 45(3):321–343Google Scholar
  45. Inbar M, Gilichinsky M, Melekestsev I, Melnikov D, Zaretskaya N (2011) Morphometric and morphological development of Holocene cinder cones: a field and remote sensing study in the Tolbachik volcanic field. Kamchatka J Volcanol Geotherm Res 201(1–4):301–311CrossRefGoogle Scholar
  46. Jones KH (1998) A comparison of algorithms used to compute hill slope as a property of the DEM. Comput Geosci 24(4):315–323CrossRefGoogle Scholar
  47. Jordan G (2007) Digital terrain analysis in a GIS environment. In: Peckham RJ, Jordan G (eds) Concepts and development digital terrain modelling, Springer, Berlin, pp 1–43Google Scholar
  48. Jordan G, Meijninger BML, van Hinsbergen DJJ, Meulenkamp JE, van Dijk PM (2005) Extraction of morphotectonic features from DEMs: development and applications for study areas in Hungary and NW Greece. Int J Appl Earth Obs Geoinf 7(3):163–182CrossRefGoogle Scholar
  49. Karátson D, Telbisz T, Wörner G (2012) Erosion rates and erosion patterns of Neogene to Quaternary stratovolcanoes in the Western Cordillera of the Central Andes: an SRTM DEM based analysis. Geomorphology 139–140:122–135CrossRefGoogle Scholar
  50. Karátson D, Telbisz T, Harangi S, Magyari E, Dunkl I, Kiss B, Jánosi C, Veres D, Braun M, Fodor E, Biró T, Kósik S, von Eynatten H, Lin D (2013) Morphometrical and geochronological constraints on the youngest eruptive activity in East-Central Europe at the Ciomadul (Csomád) lava dome complex, East Carpathians. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2013.1001.1013 Google Scholar
  51. Kereszturi G, Németh K (2012a) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Németh K (ed) Updates in volcanology—new advances in understanding volcanic systems, ISBN: 978-953-51-0915-0. InTech, pp 3–88, http://dx.doi.org/10.5772/51387
  52. Kereszturi G, Németh K (2012b) Structural and morphometric irregularities of eroded Pliocene scoria cones at the Bakony–Balaton Highland Volcanic Field, Hungary. Geomorphology 136(1):45–58CrossRefGoogle Scholar
  53. Kereszturi G, Jordan G, Németh K, Dóniz-Páez JF (2012) Syn-eruptive morphometric variability of monogenetic scoria cones. Bull Volcanol 74(9):2171–2185CrossRefGoogle Scholar
  54. Kervyn M, Ernst GGJ, Carracedo J-C, Jacobs P (2012) Geomorphometric variability of “monogenetic” volcanic cones: evidence from Mauna Kea, Lanzarote and experimental cones. Geomorphology 136(1):59–75CrossRefGoogle Scholar
  55. Kröchert J, Buchner E (2009) Age distribution of cinder cones within the Bandas del Sur Formation, southern Tenerife Canary Islands. Geol Mag 146(2):161–172CrossRefGoogle Scholar
  56. Luhr JF, Simkin T (1993) Parícutin: the volcano born in a Mexican cornfield. Phoenix, Geoscience Press, p 427Google Scholar
  57. Mannen K, Ito T (2007) Formation of scoria cone during explosive eruption at Izu-Oshima volcano, Japan. Geophys. Res. Lett. 34(L18302)Google Scholar
  58. Manville V, Németh K, Kano K (2009) Source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sediment Geol 220(3–4):136–161CrossRefGoogle Scholar
  59. Marti J, Gudmundsson A (2000) The Las Cañadas caldera (Tenerife, Canary Islands): an overlapping collapse caldera generated by magma-chamber migration. J Volcanol Geotherm Res 103(1–4):161–173CrossRefGoogle Scholar
  60. Martí J, Mitjavila J, Araña V (1994) Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Island). Geol Mag 131(6):715–727CrossRefGoogle Scholar
  61. Martí J, Planagumà L, Geyer A, Canal E, Pedrazzi D (2011) Complex interaction between Strombolian and phreatomagmatic eruptions in the Quaternary monogenetic volcanism of the Catalan Volcanic Zone (NE of Spain). J Volcanol Geotherm Res 201(1–4):178–193CrossRefGoogle Scholar
  62. Martin U, Németh K (2006) How Strombolian is a "Strombolian" scoria cone? Some irregularities in scoria cone architecture from the Transmexican Volcanic Belt, near Volcán Ceboruco (Mexico), and Al Haruj (Libya). J Volcanol Geotherm Res 155(1–2):104–118CrossRefGoogle Scholar
  63. McGetchin TR, Settle M, Chouet BA (1974) Cinder cone growth modeled after Northeast Crater, Mount Etna Sicily. J Geophys Res 79:3257–3272CrossRefGoogle Scholar
  64. Moufti MR, Németh K (2013) The intra-continental Al Madinah Volcanic Field, Western Saudi Arabia: a proposal to establish Harrat Al Madinah as the first volcanic geopark in the Kingdom of Saudi Arabia. Geoheritage:doi:  10.1007/s12371-12013-10081-12379
  65. Negrete-Aranda R, Cañón-Tapia E, Brandle JL, Ortega-Rivera MA, Lee JKW, Spelz RM, Hinojosa-Corona A (2010) Regional orientation of tectonic stress and the stress expressed by post-subduction high-magnesium volcanism in northern Baja California, Mexico: tectonics and volcanism of San Borja volcanic field. J Volcanol Geotherm Res 192:97–115CrossRefGoogle Scholar
  66. Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. Geol Soc Am Spec Pap 470:43–66CrossRefGoogle Scholar
  67. Németh K, Risso C, Nullo F, Kereszturi G (2011) The role of collapsing and rafting of scoria cones on eruption style changes and final cone morphology: Los Morados scoria cone, Mendoza Argentina. Cent Eur J Geosci 3(2):102–118CrossRefGoogle Scholar
  68. Parrot J-F (2007) Tri-dimensional parameterisation: an automated treatment to study the evolution of volcanic cones. Géomorphol Relief Processus Environ 2007(3):247–257CrossRefGoogle Scholar
  69. Pelletier JD, Cline ML (2007) Nonlinear slope-dependent sediment transport in cinder cone evolution. Geology 35(12):1067–1070CrossRefGoogle Scholar
  70. Pioli L, Erlund E, Johnson E, Cashman NK, Wallace P, Rosi M, Delgado Granados H (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin Volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271(1–4):359–368CrossRefGoogle Scholar
  71. Pittari A, Cas RAF (2004) Sole Marks at the base of the late Pleistocene Abrigo Ignimbrite, Tenerife: implications for transport and depositional processes at the base of pyroclastic flows. Bull Volcanol 66(4):356–363CrossRefGoogle Scholar
  72. Pittari A, Cas RAF, Marti J (2005) The occurrence and origin of prominent massive, pumice-rich ignimbrite lobes within the Late Pleistocene Abrigo Ignimbrite, Tenerife, Canary Islands. J Volcanol Geotherm Res 139:271–293CrossRefGoogle Scholar
  73. Pittari A, Cas RAF, Edgar CJ, Nichols HJ, Wolff JA, Marti J (2006) The influence of palaeotopography on facies architecture and pyroclastic flow processes of a lithic-rich ignimbrite in a high gradient setting: the Abrigo Ignimbrite, Tenerife, Canary Islands. J Volcanol Geotherm Res 152:273–315CrossRefGoogle Scholar
  74. Porter SC (1972) Distribution, morphology, and size frequency of cinder cones on Mauna Kea Volcano Hawaii. Geol Soc Am Bull 83(12):3607–3612CrossRefGoogle Scholar
  75. Prewitt J, Lipkin BS, Rosenfeld A (1970) Object enhancement and extraction. In: Picture processing and psychopictorics. Academic Press, Orlando, pp 75–149Google Scholar
  76. Raaflaub LD, Collins MJ (2006) The effect of error in gridded digital elevation models on the estimation of topographic parameters. Environ Model Software 21:710–732CrossRefGoogle Scholar
  77. Riedel C, Ernst GGJ, Riley M (2003) Controls on the growth and geometry of pyroclastic constructs. J Volcanol Geotherm Res 127(1–2):121–152CrossRefGoogle Scholar
  78. Rodriguez-Gonzalez A, Fernandez-Turiel JL, Perez-Torrado FJ, Gimeno D, Aulinas M (2009) Geomorphological reconstruction and morphometric modelling applied to past volcanism. Int J Earth Sci 99(3):645–660CrossRefGoogle Scholar
  79. Rodriguez-Gonzalez A, Fernandez-Turiel JL, Perez-Torrado FJ, Paris R, Gimeno D, Carracedo JC, Aulinas M (2012) Factors controlling the morphology of monogenetic basaltic volcanoes: the Holocene volcanism of Gran Canaria (Canary Islands, Spain). Geomorphology 136(1):31–44CrossRefGoogle Scholar
  80. Scott DH, Trask NJ (1971) Geology of the Lunar Crater Volcanic Field, Nye County, Nevada. US Geol Surv Prof Pap 599:1–22Google Scholar
  81. Settle M (1979) The structure and emplacement of cinder cone fields. Am J Sci 279(10):1089–1107CrossRefGoogle Scholar
  82. Sharpnack DA, Akin G (1969) An algorithm for computing slope and aspect from elevation. Photogrammetric Survey 35:247–248Google Scholar
  83. Sucipta IGBE, Takashima I, Muraoka H (2006) Morphometric age and petrological characteristic of volcanic rocks from the Bajawa cinder cone complex, Flores. Indonesia J Mineral Petrol Sci 101(2):48–68CrossRefGoogle Scholar
  84. Thirlwall MF, Singer BS, Marriner GF (2000) 39Ar–40Ar ages and geochemistry of the basaltic shield stage of Tenerife, Canary Islands, Spain. J Volcanol Geotherm Res 103(1–4):247–297CrossRefGoogle Scholar
  85. Tibaldi A (1995) Morphology of pyroclastic cones and tectonics. J Geophys Res 100(B12):24521–24535CrossRefGoogle Scholar
  86. Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177(4):857–873CrossRefGoogle Scholar
  87. Valentine GA, Perry FV, Krier D, Keating GN, Kelley RE, Cogbil AH (2006) Small-volume basaltic volcanoes: eruptive products and processes, and posteruptive geomorphic evolution in Crater Flat (Pleistocene), southern Nevada. Geol Soc Am Bull 118(11–12):1313–1330CrossRefGoogle Scholar
  88. Valentine GA, Krier DJ, Perry FV, Heiken G (2007) Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano. J Volcanol Geotherm Res 161(1–2):57–80CrossRefGoogle Scholar
  89. Vespermann D, Schmincke H-U (2000) Scoria cones and tuff rings. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 683–694Google Scholar
  90. White JDL (1991) The depositional record of small, monogenetic volcanoes within terrestrial basins. In: Fisher EV, Smith GA (eds) Sedimentation in volcanic settings. pp 155–171Google Scholar
  91. White JDL, Ross P-S (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201(1–4):1–29CrossRefGoogle Scholar
  92. Wood CA (1980a) Morphometric analysis of cinder cone degradation. J Volcanol Geotherm Res 8(2–4):137–160CrossRefGoogle Scholar
  93. Wood CA (1980b) Morphometric evolution of cinder cones. J Volcanol Geotherm Res 7(3–4):387–413CrossRefGoogle Scholar
  94. Ziadat FM (2007) Effect of contour intervals and grid cell size on the accuracy of DEMs and slope derivatives. Trans GIS 11(1):67–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gábor Kereszturi
    • 1
    Email author
  • Adelina Geyer
    • 2
  • Joan Martí
    • 2
  • Károly Németh
    • 1
  • F. Javier Dóniz-Páez
    • 3
  1. 1.Volcanic Risk SolutionsMassey UniversityPalmerston NorthNew Zealand
  2. 2.Institute of Earth Sciences ‘Jaume Almera’, CSICBarcelonaSpain
  3. 3.Department of GeographyUniversity of La LagunaTenerifeSpain

Personalised recommendations