Bulletin of Volcanology

, 75:702 | Cite as

Storage and eruption of near-liquidus rhyolite magma at Cordón Caulle, Chile

  • Jonathan M. Castro
  • C. Ian Schipper
  • Sebastian P. Mueller
  • A. S. Militzer
  • Alvaro Amigo
  • Carolina Silva Parejas
  • Dorrit Jacob
Research Article


The last three eruptions at the Cordón Caulle volcanic complex, Chile, have been strikingly similar in that they have started with relatively short pre-eruptive warning and produced chemically homogeneous rhyolite to rhyodacite magma with glassy to aphyric texture. These characteristics collectively call for an understanding of the storage conditions leading to the rise and extraction of crystal-poor silicic magma from volcanoes. We have analyzed and experimentally reproduced the mineral assemblage and glass chemistry in rhyolite magma produced in the most recent eruption of Cordón Caulle, and we use these to infer magma storage and ascent conditions. Fe–Ti oxide mineral geothermometry suggests that the rhyolite was stored at ∼870–920 °C. At these temperatures, the phenocryst assemblage (plag∼An37 > cpx + opx > mag + ilm) can be reproduced under H2O-saturated conditions of between 100 and 50 MPa, corresponding to crustal depths between about 2.5 and 5.0 km. The shallow and relatively hot magma storage conditions have implications for the rapid onset, degassing efficiency, and progression from explosive to mixed pyroclastic-effusive eruption style at Cordón Caulle.


Cordón Caulle Explosive-effusive volcanism Magma storage Plinian explosion Rhyolite 



The authors thank L.E. Lara of the SERNAGEOMIN for providing logistical support and the GeoEye foundation for the use of a high-resolution satellite photo of the Cordón Caulle vent region. C.I. Schipper acknowledges support from ERC grant 202844 under the European FP7. S. Buhre and N. Groschopf provided helpful analytical support. The authors thank P. Wallace, H. Wright, and J. Larsen for providing thorough and useful comments.

Supplementary material

445_2013_702_MOESM1_ESM.xls (96 kb)
ESM 1 (XLS 95 kb)
445_2013_702_MOESM2_ESM.xls (28 kb)
ESM 2 (XLS 27 kb)
445_2013_702_MOESM3_ESM.xls (38 kb)
ESM 3 (XLS 38 kb)
445_2013_702_MOESM4_ESM.xls (55 kb)
ESM 4 (XLS 55 kb)
445_2013_702_MOESM5_ESM.xls (54 kb)
ESM 5 (XLS 53 kb)
445_2013_702_MOESM6_ESM.xls (68 kb)
ESM 6 (XLS 68 kb)


  1. Alidibirov M, Dingwell DB (1996) Magma fragmentation by rapid decompression. Nature 380:146–148CrossRefGoogle Scholar
  2. Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe–Ti oxides. Am Mineral 73:57–61Google Scholar
  3. Bagdassarov NS, Dingwell DB (1992) A rheological investigation of vesicular rhyolite. J Volcanol Geotherm Res 50:307–322CrossRefGoogle Scholar
  4. Behrens H, Tamic N, Francois H (2004) Determination of the molar absorption coefficient for the infrared absorption band of CO2 in rhyolitic glasses. Am Mineral 89:301–306Google Scholar
  5. Bertin D, Amigo A, Lara LE, Orozco G, Silva C (2012) La erupción del Cordón Caulle 2011–2012: Evolución fase efusiva. Congreso Geologico Chileno, AntofagastaGoogle Scholar
  6. Blake S, Fink JH (1987) The dynamics of magma withdrawal from a density stratified dyke. Earth Plan Sci Lett 85:516–524CrossRefGoogle Scholar
  7. Blank JG (1993) An experimental investigation of the behavior of carbon dioxide in rhyolitic melt. Ph.D. thesis, California Institute of Technology, PasadenaGoogle Scholar
  8. Cashman KV, Sturtevant B, Papale P, Navon O (2000) Magmatic fragmentation. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 421–430Google Scholar
  9. Castro JM, Dingwell DB (2009) Rapid ascent of rhyolite magma at Chaitén volcano, Chile. Nature 461:780–784CrossRefGoogle Scholar
  10. Castro JM, Gardner JE (2008) did magma ascent rate control the explosive-effusive transition at the Inyo volcanic chain, California? Geology 36:279–282CrossRefGoogle Scholar
  11. Castro JM, Cottrell E, Tuffen H, Logan AV, Kelley KA (2009) Spherulite crystallization induces Fe-redox redistribution in silicic melt. Chem Geol 268:272–280CrossRefGoogle Scholar
  12. Castro JM, Schipper CI, Tuffen H (2012) Simultaneous pyroclastic and effusive venting at rhyolite volcanoes: the cases of Puyehue-Cordón Caulle and Chaitén. EGU Gen Assem Abstr 14:EGU2012–EGU7760Google Scholar
  13. Chouet B (1996) Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380:309–316CrossRefGoogle Scholar
  14. Coombs ML, Gardner JE (2001) Shallow-storage conditions for the rhyolite of the 1912 eruption at Novarupta, Alaska. Geology 29:775–778CrossRefGoogle Scholar
  15. Cottrell E, Gardner JE, Rutherford MJ (1999) Petrologic and experimental evidence for the movement and heating of the pre-eruptive Minoan rhyodacite (Santorini, Greece). Contrib Mineral Petrol 135:315–331CrossRefGoogle Scholar
  16. Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80:319–328Google Scholar
  17. Eichelberger JC (1995) Silicic volcanism: ascent of viscous magmas from crustal reservoirs. Annu Rev Earth Planet Sci 23:41–63CrossRefGoogle Scholar
  18. Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602CrossRefGoogle Scholar
  19. Fink JH, Pollard DD (1983) Structural evidence for dikes beneath silicic domes, Medicine Lake Highland Volcano, California. Geology 11:458–461CrossRefGoogle Scholar
  20. Gerlach DC, Frey FA, Moreno-Roa H, Lopez-Escobar L (1988) Recent volcanism in the Puyehue-Cordón Caulle region, southern Andes, Chile (40.5° S): Petrogenesis of evolved lavas. J Petrol 29:333–382CrossRefGoogle Scholar
  21. Geschwind CH, Rutherford MJ (1992) Cummingtonite and the evolution of the Mount St. Helens (Washington) magma system; an experimental study. Geology 20:1011–1014CrossRefGoogle Scholar
  22. Geschwind CH, Rutherford MJ (1995) Crystallization of microlites during magma ascent: the fluid mechanics of 1980–1986 eruptions at Mount St Helens. Bull Volcanol 57:356–370Google Scholar
  23. Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe–Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308:957–1039CrossRefGoogle Scholar
  24. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Plan Sci Lett 271:123–134CrossRefGoogle Scholar
  25. Hammer JE, Rutherford MJ (2002) An experimental study of the kinetics of decompression-induced crystallization in silicic melt. J Geophys Res 107:10,1029–10,1053Google Scholar
  26. Hammer JE, Rutherford MJ (2003) Petrologic indicators of preeruption magma dynamics. Geology 31:79–82CrossRefGoogle Scholar
  27. Jacob DE (2006) High sensitivity analysis of trace element-poor geological reference glasses by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Geostand Geoanal Res 30:221–235CrossRefGoogle Scholar
  28. Jaupart C, Allègre CJ (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Plan Sci Lett 102:413–429CrossRefGoogle Scholar
  29. Jochum KP, Nehring F (2006) BCR-1: GeoReM preferred values (11/2006). GeoReM (
  30. Kilburn CR, Voight B (2006) Slow rock fracture as eruption precursor at Soufriere Hills volcano, Montseratt. Geophys Res Lett 25:3665–3668CrossRefGoogle Scholar
  31. Lange RA, Carmichael ISE (1990) Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. In: Russell JK, Nicholls J (eds) Modern methods of igneous petrology; understanding magmatic processes. Rev Mineral 24: 25–64Google Scholar
  32. Lara LE (2008) The 2008 eruption of the Chaitén Volcano, Chile: a preliminary report. Andean Geol 36:125–129Google Scholar
  33. Lara LE, Naranjo JA, Moreno H (2004) Rhyodacitic fissure eruption in Southern Andes (Cordón Caulle; 40.5° S) after the 1960 (Mw:9.5) Chilean earthquake: a structural interpretation. J Volcanol Geotherm Res 138:127–138CrossRefGoogle Scholar
  34. Lara LE, Moreno H, Naranjo JA, Matthews S, de Arce CP (2006) Magmatic evolution of the Puyehue-Cordón Caulle Volcanic Complex (40° S), Southern Andean Volcanic Zone: from shield to unusual rhyolitic fissure volcanism. J Volcanol Geotherm Res 157:343–366CrossRefGoogle Scholar
  35. Larsen J (2006) Rhyodacite magma storage conditions prior to the 3430 yBP caldera-forming eruption of Aniakchak volcano, Alaska. Contrib Mineral Petrol 152:523–540CrossRefGoogle Scholar
  36. Le Bas MJ, Streckeisen AL (1991) The IUGS systematics of igneous rocks. J Geol Soc Lond 148:825–833CrossRefGoogle Scholar
  37. Lejeune A-M, Richet P (1995) Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J Geophys Res 100:4215–4229CrossRefGoogle Scholar
  38. Lejeune A-M, Bottinga Y, Trull TW, Richet P (1999) Rheology of bubble-bearing magmas. Earth Planet Sci Lett 166:71–84CrossRefGoogle Scholar
  39. Llewellin EW, Manga M (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143:205–217CrossRefGoogle Scholar
  40. Luhr J (2001) Glass inclusions and melt volatile contents at Parícutin Volcano, Mexico. Contrib Miner Pet 142:261–283CrossRefGoogle Scholar
  41. Manga M, Castro J, Cashman KV, Loewenberg M (1998) Rheology of bubble-bearing magmas. J Volcanol Geotherm Res 87:15–28CrossRefGoogle Scholar
  42. Martel C, Pichavant M, Bourdier J-L, Traineau H, Holtz F, Scaillet B (1998) Magma storage conditions and control of eruption regime in silicic volcanoes: experimental evidence from Mt. Pelée. Earth Plan Sci Lett 156:89–99CrossRefGoogle Scholar
  43. Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Am Mineral 83:36–42Google Scholar
  44. Moriizumi M, Nakashima S, Okumura S, Yamanoi Y (2009) Color-change processes of a plinian pumice and experimental constraints of color-change kinetics in air of an obsidian. Bull Volcanol 71:1–13CrossRefGoogle Scholar
  45. Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. Proc R Soc A 466:1201–1228. doi: 10.1098/rspa.2009.0445 CrossRefGoogle Scholar
  46. Nielsen CH, Sigurdsson H (1981) Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses. Am Mineral 66:547–552Google Scholar
  47. Okumura S, Nakamura M, Uesugi K, Nakano T, Fujioka T (2013) Coupled effect of magma degassing and rheology on silicic volcanism. Earth Plan Sci Lett 362:163–170CrossRefGoogle Scholar
  48. Papale P (1999) Strain-induced magma fragmentation in explosive eruptions. Nature 397:425–428CrossRefGoogle Scholar
  49. Pichavant M, Costa F, Burgisser A, Scaillet B, Martel C, Poussineau S (2007) Equilibration scales in silicic to intermediate magmas—implications for experimental studies. J Petrol 48:1955–1972CrossRefGoogle Scholar
  50. Roman DC, Cashman KV (2006) The origin of volcano-tectonic earthquake swarms. Geology 34:457–460CrossRefGoogle Scholar
  51. Rust AC, Manga M (2002) Effects of bubble deformation on the viscosity of dilute suspensions. J Non-Newton Fluid Mech 104:53–63CrossRefGoogle Scholar
  52. Rutherford MJ (2010) Magma ascent rates. In: Putirka, KD and Tepley FJ III (eds) Minerals, inclusions and volcanic processes, vol 69. Mineralogical Society of America, Washington, pp. 241–271Google Scholar
  53. Rutherford MJ, Sigurdsson H, Carey SN, Davis AN (1985) The May 18, 1980, eruption of Mount St. Helens, 1, melt composition and experimental phase equilibria. J Geophys Res 90:2929–2947CrossRefGoogle Scholar
  54. Silva Parejas C, Lara LE, Bertin D, Amigo A, Orozco G (2012) The 2011–2012 eruption of Cordón Caulle volcano (Southern Andes): evolution, crisis management and current hazards. EGU General Assembly 2012, Vienna, Austria, 22–27 April 2012. p. 9382Google Scholar
  55. Singer BS, Jicha BR, Harper MA, Naranjo JA, Lara LE, Moreno-Roa H (2008) Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordón Caulle volcanic complex, Chile. Geol Soc Am Bull 120:599–618CrossRefGoogle Scholar
  56. Spera FJ (2000) Physical properties of magma. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 171–190Google Scholar
  57. Stein DJ, Spera FJ (1992) Rheology and microstructure of magmatic emulsions—theory and experiments. J Volcanol Geotherm Res 49:157–174CrossRefGoogle Scholar
  58. Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (eds) Magmatism in the ocean basins. Geol Soc Spec Publ, pp. 313–345Google Scholar
  59. Taylor BE, Eichelberger JC, Westrich HR (1983) Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature 306:541–545CrossRefGoogle Scholar
  60. Wicks C, de la Llera JC, Lara LE, Lowenstern J (2011) The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile. Nature 478:374–377CrossRefGoogle Scholar
  61. Woods AW, Koyaguchi T (1994) Transitions between explosive and effusive eruptions of silicic magmas. Nature 370:641–644CrossRefGoogle Scholar
  62. Zhang Y, Belcher R, Ihinger PD, Wang L, Xu Z, Newman S (1997) New calibration of infrared measurement of dissolved water in rhyolitic glasses. Geochim Cosmochim Acta 61:3089–3100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jonathan M. Castro
    • 1
  • C. Ian Schipper
    • 2
    • 3
  • Sebastian P. Mueller
    • 1
  • A. S. Militzer
    • 1
  • Alvaro Amigo
    • 4
  • Carolina Silva Parejas
    • 4
  • Dorrit Jacob
    • 1
  1. 1.University of Mainz, Institute of GeosciencesMainzGermany
  2. 2.School of Geography, Environment and Earth SciencesVictoria UniversityWellingtonNew Zealand
  3. 3.Institut des Sciences de la Terre (ISTO), Centre National de la Recherche Scientifique (CNRS), l’Université d’OrléansOrléans Cedex 2France
  4. 4.Servicio Nacional de Geologia y Mineria, Volcano Hazards ProgramSantiagoChile

Personalised recommendations