Bulletin of Volcanology

, 75:695 | Cite as

Magma discharge variations during the 2011 eruptions of Shinmoe-dake volcano, Japan, revealed by geodetic and satellite observations

  • Tomofumi KozonoEmail author
  • Hideki Ueda
  • Taku Ozawa
  • Takehiro Koyaguchi
  • Eisuke Fujita
  • Akihiko Tomiya
  • Yujiro J Suzuki
Research Article


We present precise geodetic and satellite observation-based estimations of the erupted volume and discharge rate of magma during the 2011 eruptions of Kirishima-Shinmoe-dake volcano, Japan. During these events, the type and intensity of eruption drastically changed within a week, with three major sub-Plinian eruptions on January 26 and 27, and a continuous lava extrusion from January 29 to 31. In response to each eruptive event, borehole-type tiltmeters detected deflation of a magma chamber caused by migration of magma to the surface. These measurements enabled us to estimate the geodetic volume change in the magma chamber caused by each eruptive event. Erupted volumes and discharge rates were constrained during lava extrusion using synthetic aperture radar satellite imaging of lava accumulation inside the summit crater. Combining the geodetic volume change and the volume of lava extrusion enabled the determination of the erupted volume and discharge rate during each sub-Plinian event. These precise estimates provide important information about magma storage conditions in magma chambers and eruption column dynamics, and indicate that the Shinmoe-dake eruptions occurred in a critical state between explosive and effusive eruption.


Shinmoe-dake Magma discharge Tilt SAR Eruption transition 



We are grateful to Motoo Ukawa, Toshikazu Tanada, Masashi Nagai, Eiji Yamamoto, Yuhki Kohno, Yousuke Miyagi, Masayo Kikuchi, and other colleagues of NIED for construction and maintenance of V-net. We also acknowledge Toshiki Shimbori and Keiichi Fukui for providing eruption cloud echo data. We thank the associate editor Sonia Calvari and two anonymous reviewers for insightful comments and suggestions that greatly improved the manuscript. GSI of Japan is acknowledged for providing GPS data of GEONET and digital maps. Part of this study was supported by the Special Coordination Funds for Promoting Science and Technology from MEXT (“Urgent study on the 2011 eruption of Kirishima-Shinmoe-dake volcano”), JSPS KAKENHI Grant Number 24244069, and the Earthquake Research Institute cooperative research program.


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Contr 19(6):716–723. doi: 10.1109/TAC.1974.1100705 Google Scholar
  2. Bursik M (2001) Effect of wind on the rise height of volcanic plumes. Geophys Res Lett 28(18):3621–3624. doi: 10.1029/2001GL013393 CrossRefGoogle Scholar
  3. Carey SN, Sigurdsson H (1989) The intensity of plinian eruptions. Bull Volcanol 51(1):28–40. doi: 10.1007/BF01086759 CrossRefGoogle Scholar
  4. Elsworth D, Mattioli G, Taron J, Voight B, Herd R (2008) Implications of magma transfer between multiple reservoirs on eruption cycling. Science 322(5899):246–248. doi: 10.1126/science.1161297 CrossRefGoogle Scholar
  5. Formenti Y, Druitt TH (2003) Vesicle connectivity in pyroclasts and implications for the fuidisation of fountain-collapse pyroclastic flows, Montserrat (West Indies). Earth Planet Sci Lett 214(3–4):561–574. doi: 10.1016/S0012-821X(03)00386-8 CrossRefGoogle Scholar
  6. Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol 70(1):1–22. doi: 10.1007/s00445-007-0120-y CrossRefGoogle Scholar
  7. Hashimoto A, Shimbori T, Fukui K (2012) Tephra fall simulation for the eruptions at Mt. Shinmoe-dake during 26–27 January 2011 with JMANHM. SOLA 8:37–40. doi: 10.2151/sola.2012-010 Google Scholar
  8. Herring TA, King RW, McClusky SC (2010) Introduction to GAMIT/GLOBK release 10.4. Mass Inst of Technol CambridgeGoogle Scholar
  9. Imura R, Kobayashi T (1991) Eruptions of Shinmoedake volcano, Kirishima volcano group in the last 300 years. Kazan 36(2):135–148 (in Japanese with English abstract)Google Scholar
  10. Kozono T, Koyaguchi T (2012) Effects of gas escape and crystallization on the complexity of conduit flow dynamics during lava dome eruptions. J Geophys Res 117(B8):B08204. doi: 10.1029/2012JB009343 CrossRefGoogle Scholar
  11. Kueppers U, Scheu B, Spieler O, Dingwell DB (2005) Field-based density measurements as tool to identify preeruption dome structure: set-up and first results from Unzen volcano, Japan. J Volcanol Geotherm Res 141(1–2):65–75. doi: 10.1016/j.jvolgeores.2004.09.005 CrossRefGoogle Scholar
  12. Liu Y, Zhang Y, Behrens H (2005) Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O-CO2 solubility in rhyolitic melts. J Volcanol Geotherm Res 143(1–3):219–235. doi: 10.1016/j.jvolgeores.2004.09.019 CrossRefGoogle Scholar
  13. Maeno F, Nagai M, Nakada S, Burden R, Engwell S, Suzuki Y, Kaneko T (2012) Constraining tephra dispersion and deposition from cyclic subplinian explosions at Shinmoedake volcano, Kyushu, Japan, 2011. Abst Japan Geoscience Union Meet SVC50-07Google Scholar
  14. Melnik O, Barmin AA, Sparks RSJ (2005) Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma. J Volcanol Geotherm Res 143(1):53–68. doi: 10.1016/j.jvolgeores.2004.09.010 CrossRefGoogle Scholar
  15. Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull Earthquake Res Inst Univ Tokyo 36:99–134Google Scholar
  16. Newhall CG, Melson WG (1983) Explosive activity associated with the growth of volcanic domes. J Volcanol Geotherm Res 17(1–4):111–131. doi: 10.1016/0377-0273(83)90064-1 CrossRefGoogle Scholar
  17. Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am 82(2):1018–1040Google Scholar
  18. Sasaki H, Isobe K, Homma S, Sakagami M, Mukoyama S, Nakada S, Kobayashi T, Murakami R (2011) Estimation of lava volume using oblique aerial photo in Shinmoedake Volcano. Programme and abstracts the Volcanol Soc Japan: A1-13Google Scholar
  19. Sato H, Takahashi H, Yamamoto E, Fukuo N, Uehara M, Terasawa Y (1980) Development of the crustal tilt observation method using borehole-type tiltmeters. Zisin 33:343–368 (in Japanese with English abstract)Google Scholar
  20. Segall P (2010) Earthquake and volcano deformation. Princeton Univ PrGoogle Scholar
  21. Shimbori T, Fukui K (2012) Time variation of the eruption cloud echo height from Shinmoe-dake volcano in 2011 observed by Tanegashima and Fukuoka weather radars: Part II. Rep Coordinating Comm Prediction of Volcanic Eruption 109:173–178Google Scholar
  22. Slezin YB (2003) The mechanism of volcanic eruptions (a steady state approach). J Volcanol Geotherm Res 122(1–2):7–50. doi: 10.1016/S0377-0273(02)00464-X CrossRefGoogle Scholar
  23. Suzuki YJ, Koyaguchi T (2010) Numerical determination of the efficiency of entrainment in volcanic eruption columns. Geophys Res Lett 37(5):L05302. doi: 10.1029/2009GL042159 CrossRefGoogle Scholar
  24. Ueda H, Fujita E, Ukawa M, Yamamoto E, Irwan M, Kimata F (2005) Magma intrusion and discharge process at the initial stage of the 2000 activity of Miyakejima, Central Japan, inferred from tilt and GPS data. Geophys J Int 161(3):891–906. doi: 10.1111/j.1365-246X.2005.02602.x CrossRefGoogle Scholar
  25. Ueda H, Fujita E, Ukawa M, Yamamoto E (2010) Automated technique for anomalous volcanic crustal deformation detection and source estimation by using real time tiltmeter data. Rep NIED 76:21–32 (in Japanese with English abstract)Google Scholar
  26. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140(1–3):217–240. doi: 10.1016/j.jvolgeores.2004.07.023 CrossRefGoogle Scholar
  27. Williams CA, Wadge G (1998) The effects of topography on magma chamber deformation models: application to Mt. Etna and radar interferometry. Geophys Res Lett 25(10):1549–1552. doi: 10.1029/98GL01136 CrossRefGoogle Scholar
  28. Woods AW (1988) The fluid dynamics and thermodynamics of eruption columns. Bull Volcanol 50(3):169–193. doi: 10.1007/BF01079681 CrossRefGoogle Scholar
  29. Woods AW, Koyaguchi T (1994) Transitions between explosive and effusive eruptions of silicic magmas. Nature 370(6491):641–644. doi: 10.1038/370641a0 CrossRefGoogle Scholar
  30. Yang X, Davis PM, Dieterich JH (1988) Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing. J Geophys Res 93(B5):4249–4257. doi: 10.1029/JB093iB05p04249 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tomofumi Kozono
    • 1
    Email author
  • Hideki Ueda
    • 1
  • Taku Ozawa
    • 1
  • Takehiro Koyaguchi
    • 2
  • Eisuke Fujita
    • 1
  • Akihiko Tomiya
    • 3
  • Yujiro J Suzuki
    • 2
  1. 1.National Research Institute for Earth Science and Disaster PreventionTsukubaJapan
  2. 2.Earthquake Research InstituteUniversity of TokyoBunkyo-kuJapan
  3. 3.Geological Survey of Japan, AISTTsukubaJapan

Personalised recommendations