Bulletin of Volcanology

, 75:692 | Cite as

Compositionally zoned crystals and real-time degassing data reveal changes in magma transfer dynamics during the 2006 summit eruptive episodes of Mt. Etna

  • Maren Kahl
  • Sumit Chakraborty
  • Fidel Costa
  • Massimo Pompilio
  • Marco Liuzzo
  • Marco Viccaro
Research Article


One of the major objectives of volcanology remains relating variations in surface monitoring signals to the magmatic processes at depth that cause these variations. We present a method that enables compositional and temporal information stored in zoning of minerals (olivine in this case) to be linked to observations of real-time degassing data. The integrated record may reveal details of the dynamics of gradual evolution of a plumbing system during eruption. We illustrate our approach using the 2006 summit eruptive episodes of Mt. Etna. We find that the history tracked by olivine crystals, and hence, most likely the magma pathways within the shallow plumbing system of Mt. Etna, differed considerably between the July and October eruptions. The compositional and temporal record preserved in the olivine zoning patterns reveal two mafic recharge events within months of each other (June and September 2006), and each of these magma supplies may have triggered the initiation of different eruptive cycles (July 14–24 and August 31–December 14). Correlation of these observations with gas monitoring data shows that the systematic rise of the CO2/SO2 gas values is associated with the gradual (pre- and syn-eruptive) supply of batches of gas-rich mafic magma into segments of Etna’s shallow plumbing system, where mixing with pre-existing and more evolved magma occurred.


Crystal zoning Plumbing system Mt. Etna Magma mixing Gas monitoring Timescales 

Supplementary material

445_2013_692_MOESM1_ESM.pdf (126 kb)
ESM 1(PDF 126 kb)
445_2013_692_MOESM2_ESM.pdf (906 kb)
ESM 2(PDF 905 kb)


  1. Aiuppa A, Moretti R, Cinzia F, Giudice G, Gurrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35:1115–1118CrossRefGoogle Scholar
  2. Allard P, Behncke B, D’Amico S, Neri M, Gambino S (2006) Mount Etna 1993–2005: anatomy of an evolving eruptive cycle. Earth Sci Rev 78:85–114. doi:10.1016/j.earscirev.2006.04.002 CrossRefGoogle Scholar
  3. Alparone S (2005) Rapporto sull’ attività sismica in Sicilia orientale: Settimana 13–19 Giugno 2005, INGV internal report WKRSMREP20050622. Available at http://www.ct.ingv.it/index.php?option=com_docman&Itemid=331&lang=it&limitstart=180. Accessed on 26 July 2012
  4. Alparone S (2006) Rapporto sull’ attività sismica in Sicilia orientale: Settimana 24–30 Aprile 2006, INGV internal report WKRSMREP20060512. Available at http://www.ct.ingv.it/index.php?option=com_docman&Itemid=331&lang=it&limitstart=180. Accessed on 26 July 2012
  5. Behncke B, Calvari S, Giammanco S, Neri M, Pinkerton H (2008) Pyroclastic density currents resulting from the interaction of basaltic magma with hydrothermally altered rock: an example from the 2006 summit eruptions of Mt. Etna, Italy. Bull Volcanol 70:1249–1268CrossRefGoogle Scholar
  6. Behncke B, Falsaperla S, Pecora E (2009) Complex magma dynamics at Mount Etna revealed by seismic, thermal, and volcanological data. J Geophys Res 114:B03211CrossRefGoogle Scholar
  7. Bonforte A, Bonaccorso A, Guglielmino F, Palano M, Puglisi G (2008) Feeding system and magma storage beneath Mt. Etna as revealed by recent inflation/deflation cycles. J Geophys Res 113:B05406. doi:10.1029/2007JB005334 CrossRefGoogle Scholar
  8. Caltabiano T, Burton M, Giammanco S, Allard P, Bruno N, Murè F, Romano R (2004) Mt. Etna: Volcano Laboratory. In: Bonaccorso A, Calvari S, Coltelli M, Del Negro C, Falsaperla S (eds) Volcanic gas emissions from the summit craters and flanks of Mt. Etna, 1987–2000. Geophysical Monograph 143. American Geophysical Union, Washington DC, pp 111–128Google Scholar
  9. Charlier BLA, Wilson CJN, Davidson JP (2008) Rapid open-system assembly of a large silicic magma body: time-resolved evidence from cored plagioclase crystals in the Oruanui eruption deposits, New Zealand. Contrib Mineral Petrol 156:799–813CrossRefGoogle Scholar
  10. Chouet BA (1996) New methods and future trends in seismological volcano monitoring. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcanic hazards. Springer, BerlinGoogle Scholar
  11. Collins SJ, Pyle DM, Maclennan J (2009) Melt inclusions track pre-eruption storage and dehydration of magmas at Etna. Geology 37:571–574CrossRefGoogle Scholar
  12. Coogan LA, Hain A, Stahl S, Chakraborty S (2005) Experimental determination of the diffusion coefficient for calcium in olivine between 900 °C and 1500 °C. Geochim Cosmochim Acta 69:3683–3694CrossRefGoogle Scholar
  13. Corsaro RA, Di Renzo V, Distefano S, Miraglia L, Civetta L (2012) Relationship between petrologic processes in the plumbing system of Mt. Etna and the dynamics of the eastern flank from 1995 to 2005. J Volcanol Geotherm Res, doi:10.1016/j.volgeores.2012.02.010
  14. Costa F, Chakraborty S, Dohmen R (2003) Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase. Geochim Cosmochim Acta 67:2189–2200CrossRefGoogle Scholar
  15. Costa F, Chakraborty S (2004) Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine. Earth Planet Sci Lett 227:517–530CrossRefGoogle Scholar
  16. Costa F, Dohmen R, Chakraborty S (2008) Timescales of magmatic processes from modeling the zoning patterns of crystals. In: Putirka KD, Tepley III FJ (eds) Minerals, Inclusions and Volcanic Processes. RiMG 69, Mineralogical Society of America, Chantilly, VA, USA, pp 545–594Google Scholar
  17. Costa F, Morgan DJ (2010) Time constraints from chemical equilibration in magmatic crystals. In: Dosseto A, Turner SP, Van Orman JA (eds) Timescales of magmatic processes: from core to atmosphere. Wiley-Blackwell, West Sussex, pp. 125–159Google Scholar
  18. D’Amico S (2006) Rapporto dell’ attività sismica in Sicilia orientale: Settimana 15–21 Maggio 2006, INGV internal report wkrsmrep20060524. Available at http://www.ct.ingv.it/index.php?option=com_docman&Itemid=331&lang=it&limitstart=180. Accessed on 26 July 2012
  19. Dohmen R, Chakraborty S (2007) Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys Chem Min 34:409–430CrossRefGoogle Scholar
  20. Dzurisin D (2003) A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. Rev Geophys 41(1):1001. doi:10.1029/2001RG000107 CrossRefGoogle Scholar
  21. Edmonds M (2008) New geochemical insights into volcanic degassing. Phil Trans R Soc A 366:4559–4579CrossRefGoogle Scholar
  22. Ferlito C, Viccaro M, Nicotra E, Cristofolini R (2010) Relationship between the sector collapse of the South East Crater (Etna, Italy) and the paroxysmal event of November 16, 2006. Bull Volcanol 72:1179–1190CrossRefGoogle Scholar
  23. Ginibre C, Wörner G, Kronz A (2007) Crystal zoning as an archive for magma evolution. Elements 3:261–266CrossRefGoogle Scholar
  24. Humphreys MCS, Blundy JD, Sparks RSJ (2006) Magma evolution and open-system processes at Shiveluch volcano: insights from phenocryst zoning. J Petrol 47:2303–2334CrossRefGoogle Scholar
  25. Kahl M (2011) Timescales of magma mixing and magma recharge—a case study from Mt. Etna (Sicily, Italy). Dissertation, Ruhr-University Bochum, GermanyGoogle Scholar
  26. Kahl M, Chakraborty S, Costa F, Pompilio M (2011) Dynamic plumbing system beneath volcanoes revealed by kinetic modeling and the connection to monitoring data: an example from Mt. Etna. Earth Planet Sci Lett 308:11–22CrossRefGoogle Scholar
  27. Loucks RR (1996) A precise olivine–augite Mg–Fe-exchange geothermometer. Contrib Mineral Petrol 125:140–150CrossRefGoogle Scholar
  28. Marchetti E, Ripepe M, Ulivieri G, Caffo S, Privitera E (2009) Infrasonic evidences for branched conduit dynamics at Mt. Etna volcano, Italy. Geophys Res Lett 36:L19308CrossRefGoogle Scholar
  29. Matthews NE, Pyle DM, Smith VC, Wilson CJN, Huber C, van Hinsberg V (2012) Quartz zoning and the pre-eruptive evolution of the similar to 340-ka Whakamaru magma systems, New Zealand. Contrib Mineral Petrol 163:87–107CrossRefGoogle Scholar
  30. Métrich N, Clocchiatti R (1996) Sulfur abundances and its speciation in oxidized alkaline melts. Geochim Cosmochim Acta 60:4151–4160CrossRefGoogle Scholar
  31. Morgan DJ, Blake S (2006) Magmatic residence times of zoned phenocrysts: introduction and application of the binary element diffusion modeling (BDM) technique. Contrib Mineral Petrol 151:58–70CrossRefGoogle Scholar
  32. Morgan DJ, Blake S, Rogers NW, DeVivo B, Rolandi G, Macdonald R, Hawkesworth CJ (2004) Time scales of crystal residence and magma chamber volume from modeling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth Planet Sci Lett 222:933–946CrossRefGoogle Scholar
  33. Neri M, Behncke B, Burton M, Galli G, Giammanco S, Pecora PE (2006) Continuous soil radon monitoring during the July 2006 Etna eruption. Geophys Res Lett 33:L24316CrossRefGoogle Scholar
  34. Nicotra E, Viccaro M (2012) Transient uprise of gas and gas-rich magma batches fed the pulsating behavior of the 2006 eruptive episodes at Mt. Etna volcano. J Volcanol Geotherm Res 227–228:102–118CrossRefGoogle Scholar
  35. Petry C, Chakraborty S, Palme H (2004) Experimental determination of Ni diffusion coefficients and their dependency on temperature, composition, oxygen fugacity and crystallographic orientation. Geochim Cosmochim Acta 68:4179–4188CrossRefGoogle Scholar
  36. Prior DJ et al (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Min 84:1741–1759Google Scholar
  37. Ruprecht P, Cooper KM (2012) Integrating uranium-series and elemental diffusion geochronometers in mixed magmas from Volcan Quizapu, Central Chile. J Petrol 53(4):841–871CrossRefGoogle Scholar
  38. Ruprecht P, Bergantz GW, Cooper KM, Hildreth W (2012) The crustal magma storage system of Volcan Quizapu, Chile, and the effects of magma mixing on magma diversity. J Petrol 53(4):801–840CrossRefGoogle Scholar
  39. Viccaro M, Giacomoni PP, Ferlito C, Cristofolini R (2010) Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos 116:77–91CrossRefGoogle Scholar
  40. Zellmer GF, Blake S, Vance D, Hakesworth C, Turner S (1999) Plagioclase residence times at two island arc volcanoes (Kameni islands, Santorini and Soufriere, St. Vincent) determined by Sr diffusion systematics. Contrib Mineral Petrol 136:345–357CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maren Kahl
    • 1
    • 2
  • Sumit Chakraborty
    • 1
  • Fidel Costa
    • 3
  • Massimo Pompilio
    • 4
  • Marco Liuzzo
    • 5
  • Marco Viccaro
    • 6
  1. 1.Institut für Geologie, Mineralogie & GeophysikRuhr-Universität BochumBochumGermany
  2. 2.School of Earth and EnvironmentThe University of LeedsLeedsUK
  3. 3.Earth Observatory of SingaporeNanyang Technological UniversitySingaporeSingapore
  4. 4.Istituto Nazionale di Geofisica e Vulcanologia—Sezione di PisaPisaItaly
  5. 5.Istituto Nazionale di Geofisica e Vulcanologia—Sezione di PalermoPalermoItaly
  6. 6.Dipartimento di Scienze Biologiche, Geologiche e Ambientali—Sezione di Scienze della TerraUniversità di CataniaCataniaItaly

Personalised recommendations