Advertisement

Bulletin of Volcanology

, Volume 74, Issue 10, pp 2289–2301 | Cite as

Cone morphologies associated with shallow marine eruptions: east Pico Island, Azores

  • Neil C. Mitchell
  • Rachelle Stretch
  • Clive Oppenheimer
  • Daniel Kay
  • Christoph Beier
Research Article

Abstract

Eruptions in shallow water typically produce cones of volcaniclastic material. In order to identify any systematic effects of water depth and other environmental parameters on cone morphology, we have measured the heights and widths of cones in multibeam echo-sounder data from a submarine ridge extending southeast from Pico Island, Azores. XRF analyses of dredged samples show that lavas here vary compositionally from alkali basalt to trachybasalt and trachyandesite. Cones in deeper water are generally steep-sided with upper flanks close to 30°, the dip of talus at the angle of repose. However, height/width ratios of cones vary more in shallow water (200–400-m summit depth) with extreme values below 0.1; while some shallow-water cones are steep-sided as in deep water, others are much flatter. Three such cones lie on a bench at 300-m depth immediately east of Pico Island and have flank slopes of only 10–20°. We speculate that exceptionally shallow cone slopes here were produced by forced spreading of the erupting columns on reaching the water–air density barrier.

Keywords

Cone morphologies Shallow marine eruptions Pico Island Volcaniclastic material 

Notes

Acknowledgments

We thank the officers and crews involved in collecting the data on R/Vs Arquipelago (2003), Urania (1999) and Poseidon (cruises 232 and 286) and Chief Scientists Colin Devey and Karsten M. Haase. We thank especially Marco Ligi (ISMAR-Bologna, Italy) for organising the cruise on Urania as well as other CNR scientists involved in the data processing (mosaicking) and the Southampton TOBI group for running the sonar. Thanks are also due to the marine biologists of the University of the Azores for their help in running the Arquipelago cruise (Fernando Tempera and Eduardo Isidro). Fernando Tempera and Rui Quartau kindly located the current meter data for us. ChB acknowledges inspiration in Peter’s café with excellent views of Pico. Reviews by Young Kwan Sohn, John Smellie and associate editor Pierre-Simon Ross were very helpful in revising this manuscript. Funding was provided by a variety of agencies including the EASSS and CNR (TOBI survey) and the Royal Society, British Council, HEFCW, the Regional Directorate for Science and Technology of the Azores and Portuguese projects MARINOVA and MAROV (multibeam survey).

References

  1. Argus DF, Peltier WR (2010) Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives. Geophys J Int 181:697–723Google Scholar
  2. Asimow PD, Dixon JE, Langmuir CH (2004) A hydrous melting and fractionation model for mid-ocean ridge basalts: application to the Mid-Atlantic Ridge near the Azores. Geochem Geophys Geosys. doi: 10.1029/2003GC000568
  3. Bashmachnikov I (2006) Upper layer water structure and dynamics in the region of Triangle (Faial, Pico, S. Jorge) from the CTD and moorings data, obtained during the R/V “Arquipelago” cruises. University of the Azores, 11 pp.Google Scholar
  4. Batiza R, Fornari DJ, Vanko DA, Lonsdale P (1984) Craters, calderas, and hyaloclastites on young Pacific seamounts. J Geophys Res 89:8371–8390CrossRefGoogle Scholar
  5. Beier C, Haase KM, Hansteen TH (2006) Magma evolution of the Sete Cidades volcano, São Miguel, Azores. J Petrol 47:1375–1411CrossRefGoogle Scholar
  6. Beier C, Haase KM, Abouchami W, Krienitz M-S, Hauff F (2008) Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochem Geophys Geosyst 9: Paper Q12013Google Scholar
  7. Beier C, Haase KM, Turner SP (2012) Conditions of melting beneath the Azores. Lithos 144–145:1–11CrossRefGoogle Scholar
  8. Blondel P, Murton BJ (1997) Interpretation of sidescan sonar imagery. Wiley, Chichester, p 317Google Scholar
  9. Bonatti E (1990) Not so hot “hot spots” in the oceanic mantle. Science 250:107–111CrossRefGoogle Scholar
  10. Cashman KV, Fiske RS (1991) Fallout of pyroclastic debris from submarine volcanic eruptions. Science 253:275–280CrossRefGoogle Scholar
  11. Chadwick WW, Cashman KV, Embley RW, Matsumoto H, Dziak RP, de Ronde CEJ, Lau TK, Deardorff ND, Merle SG (2008a) Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc. J Geophys Res. doi: 10.1029/2007JB005215
  12. Chadwick WW, Wright IC, Schwartz-Schampera U, Hyvernaud O, Reymond D, de Ronde CEJ (2008b) Cyclic eruptions and sector collapses at Monowai submarine volcano, Kermadec arc: 1998–2007. Geochem Cosmochim Acta. doi: 10010.11029/12008GC002113
  13. Chadwick WW, Dziak RP, Haxel JH, Embley RW, Matsumoto H (2012) Submarine landslide triggered by volcanic eruption recorded by in situ hydrophone. Geology 40:51–54CrossRefGoogle Scholar
  14. Clague DA, Moore JG, Reynolds JR (2000) Formation of flat-topped volcanic cones in Hawai'i. Bull Volcanol 62:214–233CrossRefGoogle Scholar
  15. Clague DA, Uto K, Satake K, Davis AS (2002) Eruption style and flow emplacement in the submarine North Arch Volcanic Field, Hawaii. In: Takahashi E, Lipman PW, Garcia MJ, Naka J, Aramaki S (eds) Hawaiian volcanoes, deep underwater perspectives. Am Geophys Union Geophys Monogr 128, Washington, DC, pp 65-84Google Scholar
  16. Crisp JA (1984) Rates of magma emplacement and volcanic output. J Volcanol Geotherm Res 20:177–211CrossRefGoogle Scholar
  17. Davis AS, Clague DA (2006) Volcaniclastic deposits from the North Arch volcanic field, Hawaii: explosive fragmentation of alkalic lava at abyssal depths. Bull Volcanol 68:294–307CrossRefGoogle Scholar
  18. Embley RW, Chadwick WW, Baker ET, Butterfield DA, Resing JA, de Ronde CEJ, Tunnicliffe V, Lupton JE, Juniper SK, Rubin KH, Stern RJ, Lebon GT, Nakamura K, Merle SG, Hein JR, Wiens DA, Tamura Y (2006) Long-term eruptive activity at a submarine arc volcano. Nature 441:494-497Google Scholar
  19. Fiske RS, Cashman KV, Shibata A, Watanabe K (1998) Tephra dispersal from Myojinsho, Japan, during its shallow submarine eruption of 1952–1953. Bull Volcanol 59:262–272CrossRefGoogle Scholar
  20. Fiske RS, Naka J, Iizasa K, Yuasa M, Klaus A (2001) Submarine silicic caldera at the front of the Izu-Bonin arc, Japan: voluminous seafloor eruptions of rhyolite pumice. Geol Soc Am Bull 113:813–824CrossRefGoogle Scholar
  21. França Z, Tassinari CCG, Cruz JV, Aparicio AY, Araña V, Rodrigues BN (2006) Petrology, geochemistry and Sr–Nd–Pb isotopes of the volcanic rocks from Pico Island—Azores (Portugal). J Volcanol Geotherm Res 156:71–89CrossRefGoogle Scholar
  22. Gaspar JL, Queiroz G, Pacheco JA, Ferreira T, Wallenstein N, Almeida MH, Coutinho R (2003) Basaltic lava balloons produced during the 1998–2001 Serreta Submarine Ridge eruption (Azores). In: White JDL, Smellie JL, Clague DA (eds) Subaqueous explosive volcanism. Am Geophys Union Geophysical Monogr 140, Washington, DC, pp 205-212Google Scholar
  23. Juliano M (2010) Evaluation of ocean tidal/currents energy in the Azores region. In: Green Islands Azores. Ponta Delgada, Azores, 28th May 2010, http://www.green-islands-azores.uac.pt/admin/ficheiros/uploads/MIT_Tides_PontaDelgada_2010_2028_2005.pdf (accessed 31/05/2012)
  24. Kaneko T, Yasuda A, Shimano T, Nakada S, Fujii T, Kanazawa T, Nishizawa A, Matsumoto Y (2005) Submarine flank eruption preceding caldera subsidence during the 2000 eruption of Miyakejima Volcano. Japan Bull Volcanol 67:243–253CrossRefGoogle Scholar
  25. Kokelaar BP, Durant GP (1983) The submarine eruption and erosion of Surtla (Surtsey), Iceland. J Volcanol Geotherm Res 19:239–246CrossRefGoogle Scholar
  26. Lee HJ, Torresan ME, McArthur W (1994) Stability of submerged slopes on the flanks of the Hawaiian Islands, a simplified approach. U.S. Geological Survey Open-File Report 94-638:1–54Google Scholar
  27. Ligi M, Mitchell NC, Marani M, Gamberi F, Penitenti D, Carrara G, Rovere M, Portaro R, Centorami G, Bortoluzzi G, Jacobs C, Rouse I, Flewellen C, Whittle S, Terrinha P, Freire Luis J, Lourenco N (1999) Giant volcanic ridges amongst the Azores islands. EOS Trans AGU 80(Fall Meet Suppl):F913Google Scholar
  28. Lourenço N, Miranda JM, Luis JF, Ribeiro A, Victor LAM, Madeira J, Needham HD (1998) Morpho-tectonic analysis of the Azores volcanic plateau from a new bathymetric compilation of the area. Mar Geophys Res 20:141–156CrossRefGoogle Scholar
  29. Madeira J, Brum da Silveira A (2003) Active tectonics and first paleoseismological results in Faial, Pico and S. Jorge islands (Azores, Portugal). Annals Geophys 46:733–761Google Scholar
  30. Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF (2005) The Phanerozoic record of global sea-level change. Science 310:1293–1298CrossRefGoogle Scholar
  31. Mitchell NC (1991) Improving GLORIA images using sea beam data. J Geophys Res 96:337–351CrossRefGoogle Scholar
  32. Mitchell NC (1993) A model for attenuation of backscatter due to sediment accumulations and its application to determine sediment thickness with GLORIA sidescan sonar. J Geophys Res 98:22477–22493CrossRefGoogle Scholar
  33. Mitchell NC (1995) Representing backscatter fluctuations with a PDF convolution equation, and its application to study backscatter variability in side-scan sonar images. IEEE Trans Geosci Remote Sens 33:1328–1331CrossRefGoogle Scholar
  34. Mitchell NC (2012) Hot, cracking rocks deep down. Nature Geosc 5:444–445CrossRefGoogle Scholar
  35. Mitchell NC, Somers ML (1989) Quantitative backscatter measurements with a long range side-scan sonar. IEEE J Oceanic Eng 14:368–374CrossRefGoogle Scholar
  36. Mitchell NC, Tivey MA, Gente P (2000) Slopes of mid-ocean ridge fault scarps from submersible observations. Earth Planet Sci Lett 183:543–555CrossRefGoogle Scholar
  37. Mitchell NC, Masson DG, Watts AB, Gee MJR, Urgeles R (2002) The morphology of the flanks of volcanic ocean islands: a comparative study of the Canary and Hawaiian hotspot islands. J Volcanol Geotherm Res 115:83–107CrossRefGoogle Scholar
  38. Mitchell NC, Beier C, Rosin P, Quartau R, Tempera F (2008) Submarine lava flows around the coasts of Pico Island, Azores. Geochem Geophys Geosyst. doi: 10.01029/02007GC001725
  39. Moore JG (1985) Structure and eruptive mechanisms at Surtsey Volcano, Iceland. Geol Mag 122:649–661CrossRefGoogle Scholar
  40. Moore JG (1987) Subsidence of the Hawaiian ridge. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. US Geol Surv Prof Paper 1350, pp 85–100Google Scholar
  41. Nunes JC (1999) A actividade vulcânica na Ilha do Pico do Plistocénico Superior ao Holocénico: Mecanismo eruptivo e hazard vulcânico. Ph.D. thesis, Departamento de Geociencias. Universidade dos Acores, Ponta Delgada, p 355Google Scholar
  42. Parsons JD, Bush J, Syvitski JPM (2001) Hyperpycnal flow formation with small sediment concentrations. Sediment 48:465–478CrossRefGoogle Scholar
  43. Ryan WBF, Carbotte SM, Coplan JO, O'Hara S, Melkonian A, Arko R, Wiessel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosys. doi: 10.1029/2008GC002332
  44. Searle RC (1980) Tectonic pattern of the Azores spreading centre and triple junction. Earth Plan Sci Lett 51:415–434CrossRefGoogle Scholar
  45. Selby MJ (1993) Hillslope materials and processes. Oxford University Press, Oxford, p 451Google Scholar
  46. Siebe C, Komorowski J-C, Navarro C, McHone J, Delgado H, Cortes A (1995) Submarine eruption near Socorro Island, Mexico: geochemistry and scanning electron microscopy studies of floating scoria and reticulite. J Volcanol Geotherm Res 68:239–271CrossRefGoogle Scholar
  47. Smith DK (1988) Shape analysis of Pacific seamounts. Earth Planet Sci Lett 90:457–466CrossRefGoogle Scholar
  48. Smith DK (1996) Comparison of the shapes and sizes of seafloor volcanoes on Earth and “pancake” domes on Venus. J Volcanol Geotherm Res 73:47–64CrossRefGoogle Scholar
  49. Smith DK, Cann JR (1999) Constructing the upper crust of the Mid-Atlantic Ridge: A reinterpretation based on the Puna Ridge, Kilauea Volcano. J Geophys Res 104:25379–25399Google Scholar
  50. Smith DK, Cann JR, Dougherty ME, Lin J, Spencer S, Macleod C, Keeton J, McAllister E, Brooks B, Pascoe R, Robertson W (1995) Mid-Atlantic Ridge volcanism from deep-towed side-scan sonar images, 25°-29°N. J Volcanol Geotherm Res 67:233–262CrossRefGoogle Scholar
  51. Smith DK, Kong LSL, Johnson KTM, Reynolds JR (2002) Volcanic morphology of the submarine Puna Ridge, Kilauea volcano. In: Takahashi E, Lipman PW, Garcia MJ, Naka J, Aramaki S (eds) Hawaiian volcanoes, deep underwater perspectives. Am Geophys Union Geophys Monogr 128, Washington, DC, pp 125-142Google Scholar
  52. Sterl A, Caires S (2005) Climatology, variability and extrema of ocean waves: the web-based KNMI/ERA-40 wave atlas. Int J Climatol 25:963–977CrossRefGoogle Scholar
  53. Stretch R (2007) A morphometric and textural analysis of the submarine volcanic ridges of the Azores Plateau. Ph.D. thesis, Faculty of Earth Sciences and Geography, University of Cambridge,Cambridge, 360 pp.Google Scholar
  54. Stretch R, Mitchell NC, Portaro RA (2006) A morphometric analysis of the submarine volcanic ridge of Pico Island. J Volcanol Geotherm Res 156:35–54CrossRefGoogle Scholar
  55. Sunamura T (1992) Geomorphology of rocky coasts. Wiley, New YorkGoogle Scholar
  56. Thorpe RS, Brown GC (1985) The Field description of igneous rocks. Open University Press, Milton KeynesGoogle Scholar
  57. Umino S, Nonaka M, Kauahikaua J (2006) Emplacement of subaerial pahoehoe lava sheet flows into water: 1990 Kupaianaha flow of Kilauea volcano at Kaimu Bay, Hawai'i. Bull Volcanol 69:125–139CrossRefGoogle Scholar
  58. Wallace P, Anderson AT (2000) Volatiles in magmas. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 149–170Google Scholar
  59. Watts AB, Peirce C, Grevemeyer I, Paulatto M, Stratford W, Bassett D, Hunter JA, Kalnins LM, de Ronde CEJ (2012) Rapid rates of growth and collapse of Monowai submarine volcano, Kermadec Arc. Nature Geosc 5:510–515CrossRefGoogle Scholar
  60. Wessel P, Smith WHF (1991) Free software helps map and display data. Eos Trans Am Geophys Union 72:441CrossRefGoogle Scholar
  61. White JDL, Smellie JL, Clague DA (2003) Introduction: a deductive outline and topical overview of subaqueous explosive volcanism. In: White JDL, Smellie JL, Clague DA (eds) Subaqueous explosive volcanism. Am Geophys Union Geophysical Monogr 140, Washington, DC, pp 1-23Google Scholar
  62. Yamamoto T, Soya T, Suto S, Uto K, Takada A, Sakaguchi K, Ono K (1991) The 1989 submarine eruption off eastern Izu Peninsula, Japan: ejecta and eruption mechanisms. Bull Volcanol 43:301–308CrossRefGoogle Scholar
  63. Yokoyama Y, Lambeck K, De Deckker P, Johnston P, Fifield LK (2000) Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406:713–716CrossRefGoogle Scholar
  64. Young A (1972) Slopes. Oliver and Boyd, Edinburgh, p 288Google Scholar
  65. Zhu W, Smith DK, Montési LGJ (2002) Effects of regional slope on viscous flows: a preliminary study of lava terrace emplacement at submarine volcanic rift zones. J Volcanol Geotherm Res 119:145–159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Neil C. Mitchell
    • 1
  • Rachelle Stretch
    • 2
  • Clive Oppenheimer
    • 2
  • Daniel Kay
    • 1
  • Christoph Beier
    • 3
  1. 1.School of Earth, Atmospheric and Planetary SciencesUniversity of ManchesterManchesterUK
  2. 2.Department of GeographyUniversity of CambridgeCambridgeUK
  3. 3.GeoZentrum NordbayernUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations