Bulletin of Volcanology

, Volume 74, Issue 9, pp 2109–2120 | Cite as

Hydrogen emissions from Erebus volcano, Antarctica

  • Yves MoussallamEmail author
  • Clive Oppenheimer
  • Alessandro Aiuppa
  • Gaetano Giudice
  • Manuel Moussallam
  • Philip Kyle
Research Article


The continuous measurement of molecular hydrogen (H2) emissions from passively degassing volcanoes has recently been made possible using a new generation of low-cost electrochemical sensors. We have used such sensors to measure H2, along with SO2, H2O and CO2, in the gas and aerosol plume emitted from the phonolite lava lake at Erebus volcano, Antarctica. The measurements were made at the crater rim between December 2010 and January 2011. Combined with measurements of the long-term SO2 emission rate for Erebus, they indicate a characteristic H2 flux of 0.03 kg s–1 (2.8 Mg  day–1). The observed H2 content in the plume is consistent with previous estimates of redox conditions in the lava lake inferred from mineral compositions and the observed CO2/CO ratio in the gas plume (∼0.9 log units below the quartz–fayalite–magnetite buffer). These measurements suggest that H2 does not combust at the surface of the lake, and that H2 is kinetically inert in the gas/aerosol plume, retaining the signature of the high-temperature chemical equilibrium reached in the lava lake. We also observe a cyclical variation in the H2/SO2 ratio with a period of ∼10 min. These cycles correspond to oscillatory patterns of surface motion of the lava lake that have been interpreted as signs of a pulsatory magma supply at the top of the magmatic conduit.


Erebus volcano Hydrogen Magma redox conditions Lava lake Volcanic degassing 



This research was supported by grant ANT-0838817 from the Office of Polar Programs (National Science Foundation) and grant 202844 (“DEMONS”) from the European Research Council (FP7). YM was additionally supported by the University of Cambridge Home and EU Scholarship Scheme, and CO acknowledges funding from the National Centre for Earth Observation (Theme 6: “Dynamic Earth and Geohazards”). We are grateful to Hiroshi Shinohara and Eliza Calder for their constructive reviews of the original work. We also thank Tehnuka Ilanko, Bill McIntosh, Nial Peters and Aaron Curtis for assistance on Erebus.


  1. Aiuppa A, Bertagnini A, Métrich N, Moretti R, Di Muro A, Liuzzo M, Tamburello G (2010a) A model of degassing for Stromboli volcano. Earth Planet Sci Lett 295:195–204, 16/j.epsl.2010.03.040CrossRefGoogle Scholar
  2. Aiuppa A, Burton M, Caltabiano T, Giudice G, Guerrieri S, Liuzzo M, Murè F, Salerno G (2010b) Unusually large magmatic CO2 gas emissions prior to a basaltic paroxysm. Geophys Res Lett 37. doi: 10.1029/2010GL043837
  3. Aiuppa A, Federico C, Giudice G, Gurrieri S, Valenza M (2006) Hydrothermal buffering of the SO2/H2S ratio in volcanic gases: evidence from La Fossa Crater fumarolic field, Vulcano Island. Geophys Res Lett 33:5, doi: 10.1029/2006GL027730 CrossRefGoogle Scholar
  4. Aiuppa A, Federico C, Giudice G, Gurrieri S (2005) Chemical mapping of a fumarolic field: La Fossa Crater, Vulcano Island (Aeolian Islands, Italy). Geophys Res Lett 32:4, doi: 10.1029/2005GL023207 CrossRefGoogle Scholar
  5. Aiuppa A, Shinohara H, Tamburello G, Giudice G, Liuzzo M, Moretti R (2011) Hydrogen in the gas plume of an open-vent volcano, Mount Etna, Italy. J Geophys Res 116:8, doi: 10.1029/2011JB008461 CrossRefGoogle Scholar
  6. Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: a pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19:1333–1350. doi: 10.1016/0098-3004(93)90033-2 CrossRefGoogle Scholar
  7. Aster R, Mah S, Kyle P, McIntosh W, Dunbar N, Johnson J, Ruiz M, McNamara S (2003) Very long period oscillations of Mount Erebus volcano. J Geophys Res 108. doi: 10.1029/2002JB002101
  8. Boichu M, Oppenheimer C, Tsanev V, Kyle P (2010) High temporal resolution SO2 flux measurements at Erebus volcano, Antarctica. J Volcanol Geotherm Res 190:325–336. doi: 10.1016/j.jvolgeores.2009.11.020 CrossRefGoogle Scholar
  9. Burgisser, A., Alletti, M., Oppenheimer, C. (2012) Inverse modelling of gas chemistry measurements. Goldschmidt Conference, Prague, Czech RepublicGoogle Scholar
  10. Burgisser A, Scaillet B, Harshvardhan B (2008) Chemical patterns of erupting silicic magmas and their influence on the amount of degassing during ascent. J Geophys Res 113:14, doi: 10.1029/2008JB005680 CrossRefGoogle Scholar
  11. Burgisser A, Scaillet B (2007) Redox evolution of a degassing magma rising to the surface. Nature 445:194–197CrossRefGoogle Scholar
  12. Cruikshank DP, Morrison D, Lennon K (1973) Volcanic gases: hydrogen burning at Kilauea Volcano, Hawaii. Science 182:277–279. doi: 10.1126/science.182.4109.277 CrossRefGoogle Scholar
  13. De Vito S, Massera E, Quercia L, Di Francia G (2007) Analysis of volcanic gases by means of electronic nose. Sensors Actuators B Chem 127:36–41. doi: 16/j.snb.2007.07.042 CrossRefGoogle Scholar
  14. Dibble RR, Kyle PR, Rowe CA (2008) Video and seismic observations of Strombolian eruptions at Erebus volcano, Antarctica. J Volcanol Geotherm Res 177:619–634CrossRefGoogle Scholar
  15. Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161. doi: 10.1016/0883-2927(87)90030-8 CrossRefGoogle Scholar
  16. Goupillaud P, Grossmann A, Morlet J (1984) Cycle-octave and related transforms in seismic signal analysis. Geoexploration 23:85–102. doi: 10.1016/0016-7142(84)90025-5 CrossRefGoogle Scholar
  17. Ilyinskaya E, Oppenheimer C, Mather TA, Martin RS, Kyle PR (2010) Size-resolved chemical composition of aerosol emitted by Erebus volcano, Antarctica. Geochem Geophys Geosyst 11. doi: 10.1029/2009GC002855
  18. Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 °C. Comput Geosci 18:899–947. doi: 16/0098-3004(92)90029-Q CrossRefGoogle Scholar
  19. Jones L, Frechette J, Okal M, Kyle P, Oppenheimer C (2010) Terrestrial laser scanning (TLS) observations of the phonolite lava lake at Erebus volcano, Antarctica. Geol Soc Amer Ann Meet 42:177, Abstract with ProgramGoogle Scholar
  20. Jones L, Frechette J, Okal M, Kyle P, Oppenheimer C (2011) Observing the dynamics of Mount Erebus using a terrestrial-based LiDAR (abstract). Polar Technology Conference, Albuquerque 24 Mar 2011. http://polartechnologyconferenceorg/2011_pdf/PTC_2011_Jones.pdf.
  21. Kelly PJ, Kyle PR, Dunbar NW, Sims KWW (2008) Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972-2004 and comparison with older lavas. J Volcanol Geotherm Res 177:589–605CrossRefGoogle Scholar
  22. Martin RS, Roberts TJ, Mather TA, Pyle DM (2009) The implications of H2S and H2 kinetic stability in high-T mixtures of magmatic and atmospheric gases for the production of oxidized trace species (e.g., BrO and NOx). Chem Geol 263:143–150. doi: 16/j.chemgeo.2008.12.028 CrossRefGoogle Scholar
  23. Novelli PC, Lang PM, Masarie KA, Hurst DF, Myers R, Elkins JW (1999) Molecular hydrogen in the troposphere: global distribution and budget. J Geophys Res 104:444CrossRefGoogle Scholar
  24. Oppenheimer C (2010) Ultraviolet sensing of volcanic sulfur emissions. Elements 6:87–92. doi: 10.2113/gselements.6.2.87 CrossRefGoogle Scholar
  25. Oppenheimer C, Kyle PR (2008) Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions. J Volcanol Geotherm Res 177:743–754CrossRefGoogle Scholar
  26. Oppenheimer C, Lomakina AS, Kyle PR, Kingsbury NG, Boichu M (2009) Pulsatory magma supply to a phonolite lava lake. Earth Planet Sci Lett 284:392–398CrossRefGoogle Scholar
  27. Oppenheimer C, Moretti R, Kyle PR, Eschenbacher A, Lowenstern JB, Hervig RL, Dunbar NW (2011) Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. Earth Planet Sci Lett 306:261–271. doi: 10.1016/j.epsl.2011.04.005 CrossRefGoogle Scholar
  28. Oppenheimer C, Fischer TP, Scaillet B (2012) Volcanic degassing: process and impact. Treatise on Geochemistry (in press)Google Scholar
  29. Shinohara H, Matsushima N, Kazahaya K, Ohwada M (2011) Magma-hydrothermal system interaction inferred from volcanic gas measurements obtained during 2003–2008 at Meakandake volcano, Hokkaido. Japan Bull Volcanol 73:409–421. doi: 10.1007/s00445-011-0463-2 CrossRefGoogle Scholar
  30. Shinohara H (2005) A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system. J Volcanol Geotherm Res 143:319–333. doi: 16/j.jvolgeores.2004.12.004 CrossRefGoogle Scholar
  31. Sweeney D, Kyle PR, Oppenheimer C (2008) Sulfur dioxide emissions and degassing behavior of Erebus volcano, Antarctica. J Volcanol Geotherm Res 177:725–733. doi: 16/j.jvolgeores.2008.01.024 CrossRefGoogle Scholar
  32. Wardell J, Kyle PR, Chaffin C (2004) Carbon dioxide and carbon monoxide emission rates from an alkaline intra-plate volcano: Mt. Erebus, Antarctica. J Volcanol Geotherm Res 131:109–121. doi: 10.1016/S0377-0273(03)00320-2 CrossRefGoogle Scholar
  33. Zreda-Gostynska G, Kyle P, Finnegan D, Prestbo K (1997) Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment. J Geophys Res 102:055CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Yves Moussallam
    • 1
    Email author
  • Clive Oppenheimer
    • 1
    • 2
    • 3
  • Alessandro Aiuppa
    • 4
    • 5
  • Gaetano Giudice
    • 5
  • Manuel Moussallam
    • 6
  • Philip Kyle
    • 7
  1. 1.Department of GeographyUniversity of CambridgeDowning PlaceUK
  2. 2.Le Studium, Institute for Advanced StudiesOrléans and ToursFrance
  3. 3.L’Institut des Sciences de la Terre d’Orléansl’Université d’OrléansOrléans Cedex 2France
  4. 4.Dipartimento DiSTeMUniversità di PalermoPalermoItaly
  5. 5.Istituto Nazionale di Geofisica e VulcanologiaPalermoItaly
  6. 6.Institut Telecom–Telecom ParisTech–CNRS/LTCIParisFrance
  7. 7.Department of Earth and Environmental ScienceNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations