Bulletin of Volcanology

, Volume 74, Issue 9, pp 2095–2108 | Cite as

Insights into eruption dynamics from textural analysis: the case of the May, 2008, Chaitén eruption

  • Fabrizio AlfanoEmail author
  • Costanza Bonadonna
  • Lucia Gurioli
Research Article


The May, 2008, Chaitén (southern Chile) eruption was characterized by several explosive events, each associated with plumes which reached up to about 19 km above sea level on May 6. A study of the textural and physical features of the juvenile clasts erupted during the climactic phase of the 2008 eruption of Chaitén is presented. Pumice clasts show unimodal density distribution (main mode at 600 kg/m3), average vesicularity of about 69 %, a glassy groundmass with no microcrystals, and vesicles with dimension between ∼1 μm and ∼2 mm. They also show a unimodal vesicle size distribution with most frequent vesicle size in the range 0.05–0.08 mm and an estimated vesicle number density of 1.3 ± 0.5 × 105 mm−3 related to a rapid nucleation event produced during the late phases of magma rise. This is confirmed by the absence of microcrystals that could otherwise have delayed vesicle formation and allowed the magma to maintain a low viscosity and a supersaturation in volatiles. Vesiculation and fragmentation were triggered by a sudden decompression of the melt associated with the opening of the volcanic conduit (∼10 MPa s−1).


Chaitén Explosive volcanism Vesicle number density Decompression rate 



Special thanks to the “Chaitén field team”: Alain Volentik (Exxon Mobile, US), Charles and Laura Connor (University of South Florida, US), Sebastian Watt (University of Southampton, UK), and David Pyle (University of Oxford, UK). We are grateful to Laura Pioli (University of Geneva, Switzerland) for her useful and helpful comments for the data interpretation and to Wim Degruyter (University of California, Berkeley, US) for his preliminary review of the manuscript. Jonathan Castro (Monash University, US) and an anonymous reviewer are thanked for their constructive suggestions and comments that improved the manuscript.

Supplementary material

445_2012_648_MOESM1_ESM.docx (302 kb)
ESM 1 (DOCX 301 kb)


  1. Adams NK, Houghton BF, Fagents SA, Hildreth W (2006a) The transition from explosive to effusive eruptive regime: the example of the 1912 Novarupta eruption, Alaska. Geol Soc Am Bull 118(5–6):620–634CrossRefGoogle Scholar
  2. Adams NK, Houghton BF, Hildreth W (2006b) Abrupt transitions during sustained explosive eruptions: examples from the 1912 eruption of Novarupta, Alaska. Bull Volcanol 69(2):189–206CrossRefGoogle Scholar
  3. Alfano F, Bonadonna C, Volentik ACM, Connor CB, Watt SFL, Pyle DM, Connor LJ (2011) Tephra stratigraphy and eruptive volume of the May, 2008, Chaiten eruption, Chile. Bull Volcanol 73(5):613–630CrossRefGoogle Scholar
  4. Barberi F, Coltelli M, Frullani A, Rosi M, Almeida E (1995) Chronology and dispersal characteristics of recently (last 5000 years) erupted tephra of Cotopaxi (Ecuador): implications for long-term eruptive forecasting. J Volcanol Geoth Res 69:217–239CrossRefGoogle Scholar
  5. Biass S, Bonadonna C (2011) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73(1):73–90CrossRefGoogle Scholar
  6. Blott SJ, Pye K (2008) Particle shape: a review and new methods of characterization and classification. Sedimentol 55(1):31–63Google Scholar
  7. Blower JD, Keating JP, Mader HM, Phillips JC (2001) Inferring volcanic degassing processes from vesicle size distributions. Geophys Res Lett 28(2):347–350CrossRefGoogle Scholar
  8. Blower JD, Keating JP, Mader HM, Phillips JC (2002) The evolution of bubble size distributions in volcanic eruptions. J Volcanol Geoth Res 120(1–2):1–23Google Scholar
  9. Carey S, Sigurdsson H (1987) Temporal variations in column height and magma discharge rate during the 79 ad eruption of Vesuvius. Geol Soc Am Bull 99(2):303–314CrossRefGoogle Scholar
  10. Carey RJ, Houghton BF, Thordarson T (2009) Abrupt shifts between wet and dry phases of the 1875 eruption of Askja volcano: microscopic evidence for macroscopic dynamics. J Volcanol Geoth Res 184(3–4):256–270CrossRefGoogle Scholar
  11. Carey RJ, Houghton BF, Thordarson T (2010) Tephra dispersal and eruption dynamics of wet and dry phases of the 1875 eruption of Askja volcano, Iceland. Bull Volcanol 72(3):259–278CrossRefGoogle Scholar
  12. Cashman KV, Mangan MT (1994) Physical aspects of magmatic degassing .2. Constraints on vesiculation processes from textural studies of eruptive products. In: Caroll M (ed) Volatiles in magmas. Min Soc Am. pp 447–478Google Scholar
  13. Castro JM, Dingwell DB (2009) Rapid ascent of rhyolitic magma at Chaiten volcano, Chile. Nat 461(7265):780–U729CrossRefGoogle Scholar
  14. Castro JM, Cordonnier B, Tuffen H, Tobin MJ, Puskar L, Martin MC, Bechtel HA (2012) The role of melt-fracture degassing in defusing explosive rhyolite eruptions at volcán Chaitén. Earth Planet Sci Lett 333–334:63–69CrossRefGoogle Scholar
  15. Cheng HC, Lemlich R (1983) Errors in the measurement of bubble-size distribution in foam. Ind Eng Chem Fund 22(1):105–109CrossRefGoogle Scholar
  16. Cioni R, Bertagnini A, Andronico D, Cole PD, Mundula F (2011) The 512 AD eruption of Vesuvius: complex dynamics of a small scale subplinian event. Bull Volcanol 73(7):789–810CrossRefGoogle Scholar
  17. Coltelli M, Del Carlo P, Vezzoli L (1998) Discovery of a Plinian basaltic eruption of Roman age at Etna volcano, Italy. Geol 26(12):1095–1098CrossRefGoogle Scholar
  18. Costantini L (2010) Understanding basaltic explosive volcanism. In: Terre & Environnement. Université de Genève, Genève, p 166Google Scholar
  19. Costantini L, Houghton BF, Bonadonna C (2010) Constraints on eruption dynamics of basaltic explosive activity derived from chemical and microtextural study: the example of the Fontana Lapilli Plinian eruption, Nicaragua. J Volcanol Geoth Res 189(3–4):207–224CrossRefGoogle Scholar
  20. Fierstein J, Hildreth W (1992) The Plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bull Volcanol 54:646–684CrossRefGoogle Scholar
  21. Gaonac’h H, Lovejoy S, Schertzer D (2005) Scaling vesicle distributions and volcanic eruptions. Bull Volcanol 67(4):350–357CrossRefGoogle Scholar
  22. Gurioli L, Houghton BF, Cashman KV, Cioni R (2005) Complex changes in eruption dynamics during the 79 ad eruption of Vesuvius. Bull Volcanol 67:144–159CrossRefGoogle Scholar
  23. Gurioli L, Harris AJL, Houghton BF, Polacci M, Ripepe M (2008) Textural and geophysical characterization of explosive basaltic activity at Villarrica volcano. J Geophys Res 113. doi: 10.1029/2007JB005328
  24. Helz RT (1987) Diverse olivine types in lava of the 1959 eruption of Kilauea Volcano and their bearing on eruption dynamics. U S Geol Surv Prof Papers 1350:691–722Google Scholar
  25. Holasek RE, Self S (1995) Goes weather-satellite observations and measurements of the May 18, 1980, Mount-St-Helens eruption. J Geophys Res-Solid Earth 100(B5):8469–8487CrossRefGoogle Scholar
  26. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51(6):451–462CrossRefGoogle Scholar
  27. Houghton BF, Wilson CJN, Del Carlo P, Coltelli M, Sable JE, Carey R (2004) The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122 bc. J Volcanol Geoth Res 137(1–3):1–14CrossRefGoogle Scholar
  28. Houghton BF, Carey RJ, Cashman KV, Wilson CJN, Hobden BJ, Hammer JE (2010) Diverse patterns of ascent, degassing, and eruption of rhyolite magma during the 1.8 ka Taupo eruption, New Zealand: evidence from clast vesicularity. J Volcanol Geoth Res 195(1):31–47CrossRefGoogle Scholar
  29. Klug C, Cashman KV (1994) Vesiculation of May 18, 1980, Mount St-Helens magma. Geol 22(5):468–472CrossRefGoogle Scholar
  30. Klug C, Cashman KV (1996) Permeability development in vesiculating magmas: implications for fragmentation. Bull Volcanol 58(2–3):87–100CrossRefGoogle Scholar
  31. Klug C, Cashman KV, Bacon CR (2002) Structure and physical characteristics of pumice from the climatic eruption of Mt Mazama (Crater Lake) Oregon. Bull Volcanol 64:486–501CrossRefGoogle Scholar
  32. Lara LE (2009) The 2008 eruption of the chaiten volcano, Chile: a preliminary report. Andean Geol 36(1):125–129Google Scholar
  33. Lautze NC, Houghton BF (2005) Physical mingling of magma and complex eruption dynamics in the shallow conduit at Stromboli volcano, Italy. Geol 33:425–428CrossRefGoogle Scholar
  34. Lautze NC, Houghton BF (2007) Linking variable explosion style and magma textures during 2002 at Stromboli volcano, Italy. Bull Volcano 69:445–460CrossRefGoogle Scholar
  35. Lautze NC, Houghton BF (2008) Single explosions at Stromboli in 2002: use of clast microtextures to map physical diversity across a fragmentation zone. J Volcanol Geoth Res 170:262–268CrossRefGoogle Scholar
  36. Mangan MT, Cashman KV (1996) The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. J Volcanol Geoth Res 73(1–2):1–18CrossRefGoogle Scholar
  37. Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geoth Res 186(1–2):10–21CrossRefGoogle Scholar
  38. Metrich N, Bertagnini A, Landi P, Rosi M (2001) Crystallization driven by decompression and water loss at Stromboli Volcano (Aeolian Islands, Italy). J Petrol 42:1471–1490CrossRefGoogle Scholar
  39. Parfitt EA (1998) A study of clast size distribution, ash deposition and fragmentation in a Hawaiian-style volcanic eruption. J Volcanol Geotherm Res 84:197–208CrossRefGoogle Scholar
  40. Parfitt EA, Wilson L (1999) A Plinian treatment of fallout from Hawaiian lava fountains. J Volcanol Geoth Res 88:67–75CrossRefGoogle Scholar
  41. Patrick, M (2005) Strombolian eruption dynamics from thermal (FLIR) video imagery, Ph.D. Thesis, University of Hawaii, HawaiiGoogle Scholar
  42. Pistolesi M, Rosi M, Cioni R, Cashman KV, Rossotti A, Aguilera E (2011) Physical volcanology of the post-twelfth-century activity at Cotopaxi volcano, Ecuador: behavior of an andesitic central volcano. Geol Soc Am Bull 123(5–6):1193–1215CrossRefGoogle Scholar
  43. Rosi M, Landi P, Polacci M, Di Muro A, Zandomeneghi D (2004) Role of conduit shear on ascent of the crystal-rich magma feeding the 800-year-BP Plinian eruption of Quilotoa Volcano (Ecuador). Bull Volcanol 66(4):307–321CrossRefGoogle Scholar
  44. Rust AC, Cashman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J. Geophys. Res.-Solid Earth 116:B11202Google Scholar
  45. Sable JE, Houghton BF, Del Carlo P, Coltelli M (2006) Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: evidence from clasts microtextures. J Volcanol Geoth Res 158:333–354CrossRefGoogle Scholar
  46. Sable JE, Houghton BF, Wilson CJN, Carey RJ (2009) Eruption mechanisms during the climax of the Tarawera 1886 basaltic Plinian eruption inferred from microtextural characteristics of the deposit. In: Self S, Larsen J, Rowland K, Hoskuldsson A, Thordarson T (eds) Studies in volcanology: the legacy of George Walker. Geol Soc, LondonGoogle Scholar
  47. Sahagian DL, Proussevitch AA (1998) 3D particle size distribution from 2D observations: stereology for natural applications. J Volcanol Geoth Res 84:173–196CrossRefGoogle Scholar
  48. Shea T, Gurioli L, Larsen JF, Houghton BF, Hammer JE, Cashman KV (2010a) Linking experimental and natural vesicle textures in Vesuvius 79 ad white pumice. J Volcanol Geoth Res 192(1–2):69–84CrossRefGoogle Scholar
  49. Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010b) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geoth Res 190(3–4):271–289CrossRefGoogle Scholar
  50. Shea T, Gurioli L, Houghton BF, Cioni R, Cashman KV (2011) Column collapse and generation of pyroclastic density currents during the ad 79 eruption of Vesuvius: the role of pyroclast density. Geol 39(7):695–698CrossRefGoogle Scholar
  51. Smithsonian Institution (2008) Chaitén. Bull Glob Volcan Netw, v. 33, no. 04-06Google Scholar
  52. Sparks RSJ (1978) Dynamics of bubble formation and growth in magmas—review and analysis. J Volcanol Geoth Res 3(1–2):1–37CrossRefGoogle Scholar
  53. Stovall W, Houghton B, Gonnermann H, Fagents S, Swanson D (2011) Eruption dynamics of Hawaiian-style fountains: the case study of episode 1 of the Kīlauea Iki 1959 eruption. Bull Volcanol 73(5):511–529CrossRefGoogle Scholar
  54. Sutton AN, Blake S, Wilson CJN (1995) An outline geochemistry of rhyolite eruptives from taupo volcanic center, New-Zealand. J Volcanol Geoth Res 68(1–3):153–175CrossRefGoogle Scholar
  55. Sutton AN, Blake S, Wilson CJN, Charlier BLA (2000) Late Quaternary evolution of a hyperactive rhyolite magmatic system: Taupo volcanic centre, New Zealand. J Geol Soc Lond 157:537–552CrossRefGoogle Scholar
  56. Tait S, Thomas R, Gardner J, Jaupart C (1998) Constraints on cooling rates and permeabilities of pumice in an explosive eruption jet from colour and magnetic mineralogy. J Volcanol Geoth Res 86(1–4):79–91CrossRefGoogle Scholar
  57. Thomas RME, Sparks RSJ (1992) Cooling of tephra during fallout from eruption columns. Bull Volcanol 54(7):542–553CrossRefGoogle Scholar
  58. Toramaru A (1990) Measurement of bubble-size distributions in vesiculated rocks with implications for quantitative estimation of eruption processes. J Volcanol Geoth Res 43(1–4):71–90CrossRefGoogle Scholar
  59. Toramaru A (1995) Numerical study of nucleation and growth of bubbles in viscous magmas. J Geophys Res 100:1913–1931CrossRefGoogle Scholar
  60. Toramaru A (2006) BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J Volcanol Geoth Res 154(3–4):303–316CrossRefGoogle Scholar
  61. Verhoogen J (1951) Mechanics of ash formation. Am J Sci 249(10):729–739CrossRefGoogle Scholar
  62. Walker GPL, Self S, Wilson L (1984) Tarawera, 1886, New Zealand—a basaltic Plinian fissure eruption. J Volcanol Geotherm Res 21:61–78CrossRefGoogle Scholar
  63. Wallace PJ, Anderson AT (1998) Effects of eruption and lava drainback on the H2O contents of basaltic magmas at Kilauea volcano. Bull Volcanol 59:327–344CrossRefGoogle Scholar
  64. Wicks C, de la Llera JC, Lara LE, Lowenstern J (2011) The role of dyking and fault control in the rapid onset of eruption at Chaiten volcano. Chile Nat 478(7369):374-+Google Scholar
  65. Wilson CJN (1993) Stratigraphy, chronology, styles and dynamics of late quaternary eruptions from Taupo volcano, New-Zealand. Philos Trans R Soc Lond Ser a-Math Phys Eng Sci 343(1668):205–306CrossRefGoogle Scholar
  66. Wilson CJN, Walker GPL (1985) The Taupo eruption, New-Zealand. 1. General-aspects. Philos Trans R Soc Lond Ser a-Math Phys Eng Sci 314(1529):199CrossRefGoogle Scholar
  67. Wilson L, Walker GPL (1987) Explosive volcanic-eruptions. 6. Ejecta dispersal in Plinian eruptions—the control of eruption conditions and atmospheric properties. Geophys J R Astron Soc 89(2):657–679CrossRefGoogle Scholar
  68. Witter JB, Kress VC, Delmelle P, Stix J (2004) Volatile degassing, petrology, and magma dynamics of the Villarrica lava lake, southern Chile. J Volcanol Geoth Res 134:303–337CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Fabrizio Alfano
    • 1
    Email author
  • Costanza Bonadonna
    • 1
  • Lucia Gurioli
    • 2
    • 3
    • 4
  1. 1.Département de Minéralogie, Section des Sciences de la Terre et de L’EnvironnementUniversité de GenèveGenèveSwitzerland
  2. 2.Université Blaise Pascal, Laboratoire Magmas et VolcansClermont UniversitéClermont FerrandFrance
  3. 3.CNRS, UMR 6524, LMVClermont-FerrandFrance
  4. 4.IRD, R 163, LMVClermont-FerrandFrance

Personalised recommendations