Bulletin of Volcanology

, Volume 74, Issue 8, pp 1821–1831 | Cite as

Electrical resistivity tomography study of Taal volcano hydrothermal system, Philippines

  • I. FikosEmail author
  • G. Vargemezis
  • J. Zlotnicki
  • J. R. Puertollano
  • P. B. Alanis
  • R. C. Pigtain
  • E. U. Villacorte
  • G. A. Malipot
  • Y. Sasai
Research Article


Taal volcano (311 m in altitude) is located in The Philippines (14°N, 121°E) and since 1572 has erupted 33 times, causing more than 2,000 casualties during the most violent eruptions. In March 2010, the shallow structures in areas where present-day surface activity takes place were investigated by DC resistivity surveys. Electrical resistivity tomography (ERT) lines were performed above the two identified hydrothermal areas located on the northern flank of the volcano and in the Main Crater, respectively. Due to rough topography, deep valleys, and dense vegetation, most measurements were collected using a remote method based on a laboratory-made equipment. This allowed retrieval of information down to a depth of 250 m. ERTs results detail the outlines of the two geothermal fields defined by previous self-potential, CO2 soil degassing, ground temperature, and magnetic mapping (Harada et al. Japan Acad Sci 81:261–266, 2005; Zlotnicki et al. Bull Volcanol 71:29–49, 2009a, Phys Chem Earth 34:294–408, 2009b). Hydrothermal fluids originate mainly from inside the northern part of the Main Crater at a depth greater than the bottom of the Crater Lake, and flow upward to the ground surface. Furthermore, water from the Main Crater Lake infiltrates inside the surrounding geological formations. The hydrothermal fluids, outlined by gas releases and high temperatures, cross the crater rim and interact with the northern geothermal field located outside the Main Crater.


Electrical resistivity tomography Volcano Hydrothermal system Taal 



The authors would like to thank EMSEV Inter-Association (“ElectroMagnetic Studies of Earthquakes and Volcanoes”) supported by the International Union of Geodesy and Geophysics (IUGG) for the invitation to work in Taal volcano. We greatly thank Dr. Renato Solidum Jr., Director of the Philippine Institute of Volcanology and Seismology (PHIVOLCS), for allowing us to use some of their hardware in the field and for the participation of PHIVOLCS personnel in the field work. Director of the Volcanological section, Mr. Jaime Sincioco, has always supported with great efficiency the EMSEV–PHIVOLCS cooperation, and Mrs. Mariton Bornas continues to support the cooperation. We express special thanks to J.P. Sabit and A. Loza-Oic for their valuable assistance during fieldwork. This experiment was supported by a 2009–2010 IUGG grant and the French Embassy in Manila. The authors would like to thank Dr. Fournier and an anonymous reviewer for their helpful comments.


  1. Aizawa K, Yoshimura R, Oshimana N, Yamazakia K, Utoa T, Ogawa Y, Tank SB, Kanda W, Sakanaka S, Furukawa Y, Hashimotoe T, Uyeshima M, Ogawa T, Shiozaki I, Hurst AW (2005) Hydrothermal system beneath Mt. Fuji volcano inferred from magnetotellurics and electric self-potential. Earth Planet Sci Lett 235(1-2):343–355CrossRefGoogle Scholar
  2. Anderson LA, Johnson RG (1976) Application of the self-potential method to geothermal exploration in Long Valley, California. J Geophys Res 81:1527–1532CrossRefGoogle Scholar
  3. Athanasiou EN, Tsourlos PI, Vargemezis GN, Papazachos CB, Tsokas GN (2007) Non-destructive DC resistivity surveying using flat-base electrodes. Near Surf Geophys 5:273–282Google Scholar
  4. Aubert M, Baudron JC (1998) Identification of a hidden thermal fissure in a volcanic terrain using a combination of hydrothermal convection indicators and soil–atmosphere analysis. J Volcanol Geotherm Res 35:217–225CrossRefGoogle Scholar
  5. Bartel BA, Hamburger MW, Meertens CM, Lowry AR, Corpuz E (2003) Dynamics of magmatic and hydrothermal systems at Taal volcano, Philippines, from continuous GPS measurements. J Geophys Res 108:2475. doi: 10.1029/2002JB002194 CrossRefGoogle Scholar
  6. Castany G (1968) Prospection et exploitation des eaux souterraines. Dunod 717Google Scholar
  7. Colella A, Lapenna V, Rizzon E (2004) High-resolution imaging of the High Agri Valley basin (Southern Italy) with electrical resistivity tomography. Tectonophysics 386:29–40CrossRefGoogle Scholar
  8. Dahlin T, Zhou B (2002) Gradient and mid-point-referred measurements for multi-channel 2D resistivity imaging. In: Proceedings of 8th Meeting on Environmental and Engineering Geophysics, Aveiro, Portugal, 8–12 September 2002:157–160Google Scholar
  9. Delmelle P, Kusakabe M, Bernard A, Fischer T, De Brouwer S, Del Mundo E (1998) Geochemical and isotopic evidence for seawater contamination of the hydrothermal system of Taal volcano, Luzon, the Philippines. Bull Volcanol 59:562–576CrossRefGoogle Scholar
  10. Fikos I (2010) Inversion of geoelectrical tomography data: application in Anthemountas river basin. PhD thesis. Aristotle University of Thessaloniki, Greece (in Greek)Google Scholar
  11. Finizola A, Sortino F, Lénat JF, Valenza M (2002) Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO2 surveys. J Volcanol Geoth Res 116(1-2):1–18. doi: 10.1016/S0377-0273(01)00327-4 CrossRefGoogle Scholar
  12. Fournier N, Moreau M, Robertson R (2011) Disappearance of a crater lake: implications for potential explosivity at Soufriere volcano, St Vincent, Lesser Antilles. Bull Volcanol 73:543–555. doi: 10.1007/s00445-010-0422-3 CrossRefGoogle Scholar
  13. Harada M, Sabit JP, Sasai Y, Alanis PKB, Cordon JM Jr, Corpuz E, Zlotnicki J, Nagao T, Punongbayan JT (2005) Magnetic and electric field monitoring of Taal Volcano, Philippines. Part I: magnetic measurements. Japan Acad Sci 81(B):261–266Google Scholar
  14. Hashimoto T, Tanaka Y (1995) A large self-potential anomaly on Unzen Volcano, Shimabara peninsula, Kyushu Island, Japan. Geophys Res Lett 22:191–194CrossRefGoogle Scholar
  15. Jones KA, Ingham MR, Bibby HM (2008) The hydrothermal vent system of Mount Ruapehu, New Zealand—a high frequency MT survey of the summit plateau. J Volcanol Geotherm Res 176(4):591–600CrossRefGoogle Scholar
  16. Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Pergamon, New YorkGoogle Scholar
  17. La Brecque DJ, Ramirez AL, Daily WD, Binley AM, Schima SA (1996) ERT monitoring of environmental remediation processes. Meas Sci Technol 7(3):375–383CrossRefGoogle Scholar
  18. Legault MJ, Carriere D, Petrie L (2008) Synthetic model testing and distributed acquisition dc resistivity results over an unconformity uranium target from the Athabasca Basin, Northern Saskatchewan. Lead Edge 27:46–51CrossRefGoogle Scholar
  19. Legaz A, Vandemeulebrouck J, Revil A, Kemna A, Hurst AW, Reeves R, Papasin R (2009) A case study of resistivity and self-potential signatures of hydrothermal instabilities, Inferno Crater Lake, Waimangu, New Zealand. Geophys Res Lett 36:L12306. doi: 10.1029/2009GL037573 CrossRefGoogle Scholar
  20. Li Y, Oldenburg DW (1992) Inversion of DC resistivity data using an approximate inverse mapping. Geophys J Int 116:527–537CrossRefGoogle Scholar
  21. Loke MH, Barker RD (1995) Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60:1682–1690Google Scholar
  22. Mandel S, Shiftan Z (1981) Groundwater resources. Investigation and development. Academic, London, p 269Google Scholar
  23. Massenet F, Pham VN (1985) Mapping and surveillance of active fissure zones on a volcano by the self-potential method, Etna, Sicily. J Volcanol Geotherm Res 24:315–338. doi: 10.1016/0377-0273(85)90075-7 CrossRefGoogle Scholar
  24. Meglich TM, Williams MC, Hodges SM, DeMarco MJ (2003) Subsurface geophysical imaging of lava tubes, Lava Beds National Monument, CA. Geophysics 2003, December 2003, Orlando, FL. Report submitted to the Florida Department of Transportation seen online at
  25. Park SK, Van GP (1991) Inversion of pole–pole data for 3-D resistivity structure beneath arrays of electrodes. Geophysics 56:951–960Google Scholar
  26. Ramos EG (2001) Geomorphic features of Taal volcano. J Geol Soc Phil 56(3–4):105–124Google Scholar
  27. Ramos EG (2002) Origin and geologic features of Taal Lake, Philippines. Aquat Ecosys Health Manag 5(2):155–162. doi: 10.1080/14634980290031794 CrossRefGoogle Scholar
  28. Sasai Y, Zlotnicki J, Nishida Y, Yvetot P, Morat P, Murakami H, Tanaka Y, Ishikawa Y, Koyama S, Sekiguchi W (1997) Electromagnetic monitoring of Miyake-jima volcano, Izu-Bonin Arc, Japan: a preliminary report. J Geomag Geoelectr 49:1293–1316CrossRefGoogle Scholar
  29. Sasaki Y (1994) 3D inversion using the finite element method. Geophysics 59:1839–1848Google Scholar
  30. Shima H (1990) 2-D automatic resistivity inversion technique using alpha centers. Geophysics 55:682–694Google Scholar
  31. Tamburriello G, Balasco M, Rizzo E, Harabaglia P, Lapenna V, Siniscalchi A (2008) Deep electrical resistivity tomography and geothermal analysis of Bradano foredeep deposits in Venosa area (Southern Italy): preliminary results. Ann Geophys 51(1):203–211Google Scholar
  32. Touttain JP, Sortino F, Baubron JC, Richon P, Surono, Sumatri S, Nonell A (2009) Structure and CO2 budget of Merapi volcano during inter-eruptive periods. Bull Volcanol 71(7):815–826. doi: 10.1007/s00445-009-0266-x CrossRefGoogle Scholar
  33. Tripp A, Hohmann G, Swift C (1984) Two-dimensional resistivity inversion. Geophysics 49:1708–1717Google Scholar
  34. Tsourlos PI (1995) Modeling, interpretation and inversion of multielectrode resistivity survey data. PhD thesis, Department of Electronics, University of YorkGoogle Scholar
  35. Wardman JB, Wilson TM, Bodger PS, Cole JW and Johnston DM (2011) Investigating the electrical conductivity of volcanic ash and its effect on HV power systems. J Phys Chem Earth, doi:10.1016/j.pce.2011.09.003Google Scholar
  36. Xia J, Ludvigson G, Miller RD, Mayer L, Haj A (2010) Delineation of a volcanic ash body using electrical resistivity profiling. J Geophys Eng 7:267–276. doi: 10.1088/1742-2132/7/3/005 CrossRefGoogle Scholar
  37. Yamaya Y, Mogi T, Hashimoto T, Ichihara H (2009) Hydrothermal system beneath the crater of Tarumai volcano, Japan: 3-D resistivity structure revealed using audio-magnetotellurics and induction vector. J Volcanol Geotherm Res 187(3–4):193–202CrossRefGoogle Scholar
  38. Yi MJ, Kim JH, Chung SH (2003) Enhancing the resolving power of least-squares inversion with active constraint balancing. Geophysics 68(3):931–941Google Scholar
  39. Yokoyama I, Alcaraz A, Pena O (1974) Gravimetric studies of Taal Volcano, Philippines. Bull Volcanol 39(3):479–489. doi: 10.1007/BF02597268 CrossRefGoogle Scholar
  40. Zlotnicki J, Nishida Y (2003) Morphological insights of self-potential anomalies on volcanoes. Surv Geophys 24:291. doi: 10.1023/B CrossRefGoogle Scholar
  41. Zlotnicki J, Sasay Y, Toutain JP, Villacorte EU, Bernard A, Sabit, Julio P, Gordon JR, Corpuz JM, Ernesto G, Harada M, Punongbayan JT, Hase H, Nagao T (2009a) Combined electromagnetic geochemical and thermal surveys of Taal volcano (Philippines) during the period 2005–2006. Bull Volcanol 71(1):29–49. doi: 10.1007/s00445-008-0205-2 CrossRefGoogle Scholar
  42. Zlotnicki J, Sasay Y, Toutain JP, Villacorte EU, Harada M, PHILVOLCS team, Yvetot P, Fauquet F, Bernard A, Nagao T (2009b) Electromagnetic and geochemical methods applied to investigations of hydrothermal/volcanic unrests: examples of Taal and Miyake-jima (Japan) volcanoes. Phys Chem Earth 34:294–408Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • I. Fikos
    • 1
    Email author
  • G. Vargemezis
    • 1
  • J. Zlotnicki
    • 2
  • J. R. Puertollano
    • 3
  • P. B. Alanis
    • 3
  • R. C. Pigtain
    • 3
  • E. U. Villacorte
    • 3
  • G. A. Malipot
    • 3
  • Y. Sasai
    • 4
  1. 1.Geophysical LaboratoryAristotle’s University of ThessalonikiThessalonikiGreece
  2. 2.CNRS–UMR6524–OPGCAubière cedexFrance
  3. 3.Philippine Institute of Volcanology and SeismologyQuezon CityPhilippines
  4. 4.Earthquake Prediction Research CentreTokai UniversityShizuokaJapan

Personalised recommendations