Bulletin of Volcanology

, Volume 74, Issue 6, pp 1395–1407 | Cite as

Monitoring of the plume from the basaltic phreatomagmatic 2004 Grímsvötn eruption—application of weather radar and comparison with plume models

  • Björn Oddsson
  • Magnús T. Gudmundsson
  • Guðrún Larsen
  • Sigrún Karlsdóttir
Research Article


The Grímsvötn eruption in November 2004 belongs to a class of small- to medium-sized phreatomagmatic eruptions which are common in Iceland. The eruption lasted 6 days, but the main phase, producing most of the 0.02 km3 of magma erupted, was visible for 33 h on the C-band weather radar of the Icelandic Meteorological Office located in Keflavík, 260 km to the west of the volcano. The plume rose to 8–12 km high over sea level during 33 h. The long distance between radar and source severely reduces the accuracy of the plume height determinations, causing 3.5-km steps in recorded heights. Moreover, an apparent height overestimate of ~1.5 km in the uncorrected radar records occurs, possibly caused by wave ducting or super-refraction in the atmosphere. The stepping and the height overestimate can be partly overcome by averaging the plume heights and by applying a height adjustment based on direct aircraft measurements. Adjusted weather radar data on plume height are used to estimate the total mass erupted using empirical plume models mostly based on magmatic eruptions and to compare it with detailed in situ measurements of the mass of erupted tephra. The errors arising because of the large radar plume distance limit the applicability of the data for detailed comparisons. However, the results indicate that the models overestimate the mass erupted by a factor of three to four. This supports theoretical models indicating that high steam content of phreatomagmatic (wet) plumes enhances their height compared to dry plumes.


Explosive eruptions Magma discharge Plume models Iceland 



The field work was done with the support of the Iceland Glaciological Society. Hálfdán Ágústsson, Katrín Auðunardóttir, Hrafnhildur Hannesdóttir and Snævarr Guðmundsson helped in the field, and Þorsteinn Jónsson gave technical support. Sverrir Guðmundsson helped with Matlab programming. Philippe Crochet is acknowledged for providing the Vertical Refractivity Gradient estimates and some useful comments to the paper. Peter Webley and an anonymous reviewer are thanked for their contribution. The project was funded by the Icelandic Research Fund and Landsvirkjun.


  1. Albino F, Pinel V, Sigmundsson F (2010) Influence of surface load variations on eruption likelihood: application to two Icelandic subglacial volcanoes, Grímsvötn and Katla. Geophys J Int 181:1510–1524. doi: 10.1111/j.1365-246X.2010.04603.x Google Scholar
  2. Bean B, Dutton E (1968) Radio meteorology. Dover Publications, Inc, New YorkGoogle Scholar
  3. Bech J, Codina B, Lorente J, Bebbington D (2003) The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient. J Atmos Ocean Technol 20:845–855CrossRefGoogle Scholar
  4. Bellamy JC (1945) The use of pressure altitude and altimeter corrections in meteorology. J Meteorol 2:1–79CrossRefGoogle Scholar
  5. Björnsson H (1988) Hydrology of ice caps in volcanic regions. Rit XLV, Societas Scientarium Islandica, Reykjavík, p 139Google Scholar
  6. Björnsson H, Guðmundsson MT (1993) Variations in the thermal output of the subglacial Grímsvötn caldera, Iceland. Geophys Res Lett 20:2127–2130CrossRefGoogle Scholar
  7. Björnsson H, Björnsson S, Sigurgeirsson Th (1982) Penetration of water into hot rock boundaries of magma at Grímsvötn. Nature 295:580–581CrossRefGoogle Scholar
  8. Björnsson H, Pálsson F, Guðmundsson MT (1992) Vatnajökull, Northwestern Part. 1:100 000. Bedrock Map. Landsvirkjun og Raunvísindastofnun HáskólansGoogle Scholar
  9. Carey S, Bursik M (2000) Volcanic plumes. In: Sigurðsson H, Houghton B, Mcnutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 527–544Google Scholar
  10. Crochet P (2009) Enhancing radar estimates of precipitation over complex terrain using information derived from an orographic precipitation model. J Hydrol 377:417–433CrossRefGoogle Scholar
  11. Gudmundsson MT (2005) Subglacial volcanic activity in Iceland. In: Caseldine C, Russell A, Hardardóttir J, Knudsen O (eds.) Iceland: modern processes, past environments. Elsevier, Amsterdam pp 127–151Google Scholar
  12. Gudmundsson MT, Björnsson H (1991) Eruptions in Grímsvötn 1934–1991. Jökull 41:21–46Google Scholar
  13. Gudmundsson MT, Sigmundsson F, Björnsson H, Högnadóttir Th (2004) The 1996 eruption at Gjálp, Vatnajökull ice cap, Iceland: efficiency of heat transfer, ice deformation and subglacial water pressure. Bull Volcanol 66:46–65CrossRefGoogle Scholar
  14. Gudmundsson MT, Zimanowski B, Jude-Eton TC, Oddsson B, Buettner R, Dellino P, Thordarson T, Larsen G (2009) Energy partitioning in the phreatomagmatic basaltic eruption of Grímsvötn in 2004. American Geophysical Union, Fall Meeting 2009, abstract #V11B-1952Google Scholar
  15. Gudmundsson MT, Pedersen R, Vogfjörd K, Thorbjarnardóttir B, Jakobsdóttir S, Roberts MJ (2010) Eruptions in Eyjafjallajökull Volcano, Iceland. Eos 91:190–191CrossRefGoogle Scholar
  16. Hafsteinsson G (2007) Grímsvatnagos í Nóvember 2004: Vöktun á Veðurstofu Íslands [The eruption in Grímsvötn in November 2004: monitoring the eruption in Grímsvötn 2004 at the Icelandic Meteorological Office. In Icelandic], unpublished IMO reportGoogle Scholar
  17. Harris DM, Rose WI (1983) Estimating particle sizes, concentrations, and total mass of ash in volcanic clouds using weather radar. J Geophys Res 88:10969–10983CrossRefGoogle Scholar
  18. Höskuldsson Á, Óskarsson N, Pedersen R, Grönvold K, Vogfjörd K, Ólafsdóttir R (2007) The millennium eruption of Hekla in February 2000. Bull Volcanol 70:169–182CrossRefGoogle Scholar
  19. Jakobsson SP, Gudmundsson MT (2008) Subglacial and intraglacial volcanic formations in Iceland. Jökull 58:179–197Google Scholar
  20. Jude-Eton TC, Thordarson Th, Gudmundsson MT, Oddsson B (2012) Dynamics, stratigraphy, and proximal dispersal of supraglacial tephra during the ice-confined 2004 eruption at Grímsvötn volcano, Iceland, based on field, observational and tremor data. Bulletin of Volcanology. doi: 10.1007/s00445-012-0583-3
  21. Koyaguchi T, Woods AW (1996) On the formation of eruption columns following explosive mixing of magma and surface-water. J Geophys Res 101:5561–5574CrossRefGoogle Scholar
  22. Lacasse C, Karlsdóttir S, Larsen G, Soosalu H, Rose WI, Ernst GGJ (2004) Weather radar observations of the Hekla 2000 eruption cloud, Iceland. Bull Volcanol 66:457–473CrossRefGoogle Scholar
  23. Larsen G, Gudmundsson MT, Björnsson H (1998) Eight centuries of periodic volcanism at the centre of the Iceland hotspot revealed by glacier tephrostratigraphy. Geology 26(10):943–946CrossRefGoogle Scholar
  24. Marzano FS, BarbieriS VG, Rose WI (2006) Volcanic ash cloud retrieval by ground-based microwave weather radar. IEEE Trans Geosci Remote Sens 44:3235–3246CrossRefGoogle Scholar
  25. Marzano FS, Barbieri S, Picciotti E, Karlsdóttir S (2010) Monitoring sub-glacial volcanic eruption using C-band radar imagery. IEEE Trans Geosci Remote Sens 58:403–414CrossRefGoogle Scholar
  26. Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186(1–2):10–21. doi: 10.1016/j.jvolgeores.2009.01.008 CrossRefGoogle Scholar
  27. McBirney AR (1993) Igneous petrology, 2nd edn. Jones and Bartlett Publishers, BostonGoogle Scholar
  28. Morton BR, Taylor GI, Turner JS (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc Roy Soc Lond, Ser A, Math Phys Sci A234:1–23CrossRefGoogle Scholar
  29. Oddsson B (2007) The Grímsvötn eruption in 2004: Dispersal and total mass of tephra and comparison with plume transport models. MSc thesis, University of IcelandGoogle Scholar
  30. Pohjola H, Gjertsen U (2006) Up to date radar based products for potential operational application. Tech. rep. Opera work package 1.6, Final report 31 October, 2006Google Scholar
  31. Rinehart RE (1991) Radar for meteorologists. University of North Dakota, Grand ForksGoogle Scholar
  32. Rose WI, Durant AJ (2009) Fine ash content of explosive eruptions. J Volcanol Geotherm Res 186:31–39. doi: 10.1016/j.jvolgeores.2009.01.010 CrossRefGoogle Scholar
  33. Rose WI, Kostinski AB, Kelley L (1995) Real time C band radar observations of 1992 eruption clouds from Crater Peak/Spurr Volcano, Alaska. US Geol Surv Bull 2139:19–26Google Scholar
  34. Saemundsson K (1979) Outline of the geology of Iceland. Jökull 29:7–28Google Scholar
  35. Schmid A, Sonder I, Seegelken R, Zimanowski B, Büttner R, Gudmundsson MT, Oddsson B (2010) Experiments on the heat discharge at the dynamic magma–water-interface. Geophys Res Lett 37:L20311. doi: 10.1029/2010GL044963 CrossRefGoogle Scholar
  36. Scollo S, Prestifilippo M, Spata G, D'Agostino M, Coltelli M (2009) Monitoring and forecasting Etna volcanic plumes. Nat Hazards Earth Syst Sci 9(5):1573–1585CrossRefGoogle Scholar
  37. Settle M (1978) Volcanic eruption clouds and thermal power output of explosive eruptions. J Volcanol Geotherm Res 3:309–324CrossRefGoogle Scholar
  38. Sigmundsson F, Guðmundsson MT (2004) Eldgosið í Grímsvötnum í Nóvember 2004. [The Grímsvötn eruption, November 2004. In Icelandic.]. Jökull 54:139–142Google Scholar
  39. Sparks R (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15CrossRefGoogle Scholar
  40. Sparks R, Wilson L (1976) A model for the formation of ignimbrite by gravitational column collapse. J Geol Soc Lond 132:441–451CrossRefGoogle Scholar
  41. Sparks R, Bursik M, Carey S, Gilbert J, Glaze L, Sigurðsson H, Woods A (1997) Volcanic plumes. Wiley, ChichesterGoogle Scholar
  42. Stevenson JA, Lochlin S, Rae C, MacLeod A, Thordarson T (2012) Deposition in the UK of tephra from recent Icelandic eruptions. 30th Nordic Geological Winter Meeting Abstracts, 136Google Scholar
  43. Thorarinsson S (1974) Vötnin stríð. Saga Skeidarárhlaupa og Grímsvatnagosa [The swift flowing rivers: the history of Grímsvötn jökulhlaups and eruptions. In Icelandic]. Menningarsjóður, ReykjavíkGoogle Scholar
  44. Thorarinsson S (1980) Langleiðir gjósku úr thremur Kötlugosum (Distant transport of tephra in three Katla eruptions). Jökull 30:65–73Google Scholar
  45. Thordarson T, Larsen G (2007) Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history. J Geodyn 43(1):118–152CrossRefGoogle Scholar
  46. Vogfjörd K, Jakobsdóttir S, Gudmundsson GB, Roberts MJ, Ágústsson K, Arason T, Geirsson H, Karlsdóttir S, Hjaltadóttir S, Ólafsdóttir U, Thorbjarnardóttir B, Skaftadóttir T, Sturkell E, Jónasdóttir EB, Hafsteinsson G, Sveinbjörnsson H, Stefánsson R, Jónsson T (2005) Forecasting and monitoring a subglacial eruption in Iceland. Eos 86:245–252CrossRefGoogle Scholar
  47. Webley P, Mastin L (2009) Improved prediction and tracking of volcanic ash clouds. J Volcanol Geotherm Res 186(1–2):1–9. doi: 10.1016/j.jvolgeores.2008.10.022 CrossRefGoogle Scholar
  48. Wilson L, Sparks RSJ, Huang TC, Watkins ND (1978) The control of volcanic column heights by eruption energetics and dynamics. J Geophys Res 83:1829–1836CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Björn Oddsson
    • 1
  • Magnús T. Gudmundsson
    • 1
  • Guðrún Larsen
    • 1
  • Sigrún Karlsdóttir
    • 2
  1. 1.Institute of Earth SciencesUniversity of IcelandReykjavíkIceland
  2. 2.Icelandic Meteorological OfficeReykjavíkIceland

Personalised recommendations