Bulletin of Volcanology

, Volume 74, Issue 6, pp 1337–1353 | Cite as

Geographical information system approaches for hazard mapping of dilute lahars on Montserrat, West Indies

  • A. R. Darnell
  • J. Barclay
  • R. A. Herd
  • J. C. Phillips
  • A. A. Lovett
  • P. Cole
Research Article

Abstract

Many research tools for lahar hazard assessment have proved wholly unsuitable for practical application to an active volcanic system where field measurements are challenging to obtain. Two simple routing models, with minimal data demands and implemented in a geographical information system (GIS), were applied to dilute lahars originating from Soufrière Hills Volcano, Montserrat. Single-direction flow routing by path of steepest descent, commonly used for simulating normal stream-flow, was tested against LAHARZ, an established lahar model calibrated for debris flows, for ability to replicate the main flow routes. Comparing the ways in which these models capture observed changes, and how the different modelled paths deviate can also provide an indication of where dilute lahars, do not follow behaviour expected from single-phase flow models. Data were collected over two field seasons and provide (1) an overview of gross morphological change after one rainy season, (2) details of dominant channels at the time of measurement, and (3) order of magnitude estimates of individual flow volumes. Modelling results suggested both GIS-based predictive tools had associated benefits. Dominant flow routes observed in the field were generally well-predicted using the hydrological approach with a consideration of elevation error, while LAHARZ was comparatively more successful at mapping lahar dispersion and was better suited to long-term hazard assessment. This research suggests that end-member models can have utility for first-order dilute lahar hazard mapping.

Keywords

Dilute lahar Hazard GIS LAHARZ Single-direction flow routing 

Notes

Acknowledgements

This research was largely financed through an ESRC/NERC studentship (PTA-036-2006-00016). We are extremely grateful to MVO for sharing some of their data and equipment with us. Thanks also to Steve Schilling of the USGS for allowing LAHARZ to be used for this research, and to Adrian Matthews, UEA, for rainfall data. We gratefully acknowledge constructive reviews by Lucia Capra and an anonymous reviewer which have improved this paper, and editorial assistance from Hugo Delgado.

References

  1. Aguilera E, Pareschi MT, Rosi M, Zanchetta G (2004) Risk from lahars in the Northern Valleys of Cotopaxi Volcano (Ecuador). Nat Hazards 33:161–189. doi: 10.1023/B:NHAZ.0000037037.03155.23 CrossRefGoogle Scholar
  2. Alexander J, Barclay J, Susnik J, Loughlin SC, Herd RA, Darnell A, Crosweller HS (2010) Sediment-charged flash floods on Montserrat: the influence of synchronous tephra fall and varying extent of vegetation damage. J Volcanol Geotherm Res 194:127–138. doi: 10.1016/j.jvolgeores.2010.05.002 CrossRefGoogle Scholar
  3. Barclay J, Johnstone JE, Matthews AJ (2006) Meteorological monitoring of an active volcano: implications for eruption prediction. J Volcanol Geotherm Res 150:339–358. doi: 10.1016/j.jvolgeores.2005.07.020 CrossRefGoogle Scholar
  4. Barclay J, Alexander J, Susnik J (2007) Rainfall-induced lahars in the Belham Valley, Montserrat, West Indies. J Geol Soc London 164:815–827. doi: 10.1144/0016-76492006-078 CrossRefGoogle Scholar
  5. Berti M, Simoni A (2007) Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphol 90:144–161. doi: 10.1016/j.geomorph.2007.01.014 CrossRefGoogle Scholar
  6. Canuti P, Casagli N, Catani F, Falorni G (2002) Modeling the Guagua Pichincha volcano (Ecuador) lahars. Phys Chem Earth 27:1587–1599. doi: 10.1016/S1474-7065(02)00180-8 CrossRefGoogle Scholar
  7. Capra L, Borselli L, Varley N, Gavilanes-Ruiz JC, Norini G, Sarocchi D, Caballero L, Cortes A (2010) Rainfall-triggered lahars at Volcan de Colima, Mexico: surface hydro-repellency as initiation process. J Volcanol Geotherm Res 189:105–117. doi: 10.1016/j.jvolgeores.2009.10.014 CrossRefGoogle Scholar
  8. Carranza EJM, Castro OT (2006) Predicting lahar-inundation zones: case study in West Mount Pinatubo, Philippines. Nat Hazards 37:331–372. doi: 10.1007/s11069-005-6141-y CrossRefGoogle Scholar
  9. Carrivick JL, Manville V, Cronin SJ (2009) A fluid dynamics approach to modelling the 18th March 2007 lahar at Mt. Ruapehu, New Zealand. Bull Volcanol 71:153–169. doi: 10.1007/s00445-008-0213-2 CrossRefGoogle Scholar
  10. Codilean AT, Bishop P, Hoey TB (2006) Surface process models and the links between tectonics and topography. Prog Phys Geogr 30:307–333. doi: 10.1191/0309133306pp480ra CrossRefGoogle Scholar
  11. Crandell DR, Booth B, Kusumadinata K, Shimozuru D, Walker GPL, Westercamp D (1984) Source-book for volcanic-hazards zonation. UN Educa Sci Cult Org, FranceGoogle Scholar
  12. Cronin SJ, Neall VE, Lecointre JA, Palmer AS (1999) Dynamic interactions between lahars and stream flow: a case study from Ruapehu volcano, New Zealand. GSA Bull 111:28–38. doi:10.1130/0016-7606(1999) 111<0028:DIBLAS>2.3.CO;2CrossRefGoogle Scholar
  13. Darnell AR (2010) Application of geographical information systems to lahar hazard assessment on an active volcanic system. PhD thesis, University of East Anglia, NorwichGoogle Scholar
  14. Darnell A, Lovett A, Barclay J, Herd R (2009) DEM fitness for delineation of lahar inundation hazard zones. Proc GIS Res UK 17th Ann Conf 1–3 April, University of Durham, pp 197–201Google Scholar
  15. Darnell AR, Lovett AL, Barclay J, Herd RA (2010) An application-driven approach to terrain model construction. Int J Geogr Inf Sci 24:1171–1191. doi: 10.1080/13658810903318889 CrossRefGoogle Scholar
  16. Davila N, Capra L, Gavilanes-Ruiz JC, Varley N, Morini G, Gomez Vazquez A (2007) Recent lahars at Volcan de Colima (Mexico): drainage variation and spectral classification. J Volcanol Geotherm Res 165:127–141. doi: 10.1016/j.jvolgeores.2007.05.016 CrossRefGoogle Scholar
  17. De Angelis S, Bass V, Hards V, Ryan G (2007) Seismic characterisation of pyroclastic flow activity at Soufrière Hills Volcano, Montserrat, 8 January 2007. Nat Hazards Earth Syst Sci 7:467–472. doi: 10.5194/nhess-7-467-2007 CrossRefGoogle Scholar
  18. Denlinger RP, Iverson RM (2001) Flow of variably fluidized granular masses across three-dimensional terrain 2. Numerical predictions and experimental tests. J Geophys Res 106:553–566. doi: 10.1029/2000JB900330 CrossRefGoogle Scholar
  19. Doyle EE, Cronin SJ, Cole SE, Thouret JC (2010) The coalescence and organisation of lahars at Semeru volcano, Indonesia. Bull Volcanol 72:961–970. doi: 10.1007/s00445-010-0381-8 CrossRefGoogle Scholar
  20. Edmonds M, Herd RA, Strutt MH (2006) Tephra deposits associated with a large dome collapse, Soufriere Hills Volcano, Montserrat, 12–15 July 2003. J Volcanol Geotherm Res 153:313–330. doi: 10.1016/j.jvolgeores.2005.12.008 CrossRefGoogle Scholar
  21. Fagents SA, Baloga SM (2006) Toward a model for bulking and debulking of lahars. J Geophys Res 111:B10201. doi: 10.1029/2005JB003986 CrossRefGoogle Scholar
  22. Fisher P, Tate NJ (2006) Causes and consequences of error in digital elevation models. Prog Phys Geogr 30:467–489. doi: 0309133306pp480ra/0309133306 pp 492ra CrossRefGoogle Scholar
  23. Griswold JP, Iverson RM (2008) Mobility statistics and automated hazard mapping for debris flows and rock avalanches. Sci Investig Rep 2007–5276, US Geol Surv, Reston, VAGoogle Scholar
  24. Hayashi JN, Self S (1992) A comparison of pyroclastic flow and debris avalanche mobility. J Geophys Res 97:9063–9071. doi: 10.1029/92JB00173 CrossRefGoogle Scholar
  25. Hooper DM, Mattioli GS (2001) Kinematic modelling of pyroclastic flows produced by gravitational dome collapse at Soufrière Hills Volcano, Montserrat. Nat Hazards 23:65–86. doi: 10.1023/A:1008130605558 CrossRefGoogle Scholar
  26. Hubbard BE, Sheridan MF, Carrasco-Nunez G, Diaz-Castellon R, Rodriguez SR (2007) Comparative lahar hazard mapping at Volcan Citaltepetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data. J Volcanol Geotherm Res 160:99–124. doi: 10.1016/j.jvolgeores.2006.09.005 CrossRefGoogle Scholar
  27. Huggel C, Schneider D, Julio Miranda P, Delgado Granados H, Kaab A (2008) Evaluation of ASTER and SRTM DEM data for lahar modeling: a case study on lahars from Popocatépetl Volcano, Mexico. J Volcanol Geotherm Res 170:99–110. doi: 10.1016/j.jvolgeores.2007.09.005 CrossRefGoogle Scholar
  28. Hurlimann M, Rickenmann D, Medina V, Bateman A (2008) Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Eng Geol 102:152–163. doi: 10.1016/j.enggeo.2008.03.012 CrossRefGoogle Scholar
  29. Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296. doi: 10.1029/97RG00426 CrossRefGoogle Scholar
  30. Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110:972–984. doi:10.1130/0016-7606(1998) 110<0972:ODOLIH>2.3.CO;2CrossRefGoogle Scholar
  31. Kokelaar BP (2002) Setting, chronology and consequences of the eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat from 1995 to 1999. Geol Soc London Mem 21:1–43. doi: 10.1144/GSL.MEM.2002.021.01.02
  32. Lavigne F, Suwa H (2004) Contrasts between debris flows, hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia. Geomorphol 61:41–58. doi: 10.1016/j.geomorph.2003.11.005 CrossRefGoogle Scholar
  33. Lavigne F, Thouret J-C (2002) Sediment transportation and deposition by rain-triggered lahars at Merapi Volcano, Central Java. Geomophol 49:45–69. doi: 10.1016/S0169-555X(02)00160-5 CrossRefGoogle Scholar
  34. Macedonio G, Pareschi MT (1992) Numerical simulation of some lahars from Mount St. Helens. J Volcanol Geotherm Res 54:65–80. doi: 10.1016/0377-0273(92)90115-T CrossRefGoogle Scholar
  35. Magril CS, Griffiths PG, Webb RH (2010) Analyzing debris flows with the statistically calibrated empirical model LAHARZ in southeastern Arizona, USA. Geomorphol 119:111–124. doi: 10.1016/j.geomorph.2010.02.022 CrossRefGoogle Scholar
  36. Maidment DR, Olivera F, Calver A, Eatherall A, Fraczek W (1996) Unit hydrograph derived from a spatially distributed velocity field. Hydrol Process 10:831–844. doi:hyp.3360050106/(SICI)1099-1085(199606)10:6<831::AID-HYP374>3.0.CO;2-NCrossRefGoogle Scholar
  37. Matthews AJ, Barclay J, Johnstone JE (2009) The fast response of volcano-seismic activity to intense precipitation: triggering of primary volcanic activity by rainfall at Soufrière Hills Volcano, Montserrat. J Volcanol Geotherm Res 184:405–415. doi: 10.1016/j.jvolgeores.2009.05.010 CrossRefGoogle Scholar
  38. Mulder T, Alexander J (2001) The physical character of subqueous sedimentary density flows and their deposits. Sedimentol 48:269–299. doi: 10.1046/j.1365-3091.2001.00360.x CrossRefGoogle Scholar
  39. Newhall CG, Hoblitt RP (2002) Constructing event trees for volcanic crises. Bull Volcanol 64:3–20. doi: 10.1007/s004450100173 CrossRefGoogle Scholar
  40. O’Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119:244–261. doi: (ASCE)0733-1993)119:2(244/(ASCE)0733-9429(1993) 119:2(244 CrossRefGoogle Scholar
  41. O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process 28:328–344. doi: 10.1016/S0734-189X(84)80011-0 Google Scholar
  42. Oramas Dorta D, Toyos G, Oppenheimer C, Pareschi MT, Sulpizio R, Zanchetta G (2007) Empirical modelling of the May 1998 small debris flows in Sarno (Italy) using LAHARZ. Nat Hazards 40:381–396. doi: 10.1007/s11069-006-0035-5 CrossRefGoogle Scholar
  43. Pitman EB, Patra A, Bauer A, Sheridan M, Bursik M (2003) Computing debris flows and landslides. Phys Fluids 15:3638–3646. doi: 10.1063/1.1614253 CrossRefGoogle Scholar
  44. Procter JN, Cronin SJ, Fuller IC, Sheridan M, Neall VE, Keys H (2010) Lahar hazard assessment using Titan2D for an alluvial fan with rapidly changing geomorphology: Whangaehu River, Mt. Ruapehu. Geomorphol 116:162–174. doi: 10.1016/j.geomorph.2009.10.016 CrossRefGoogle Scholar
  45. Quinn PF, Beven KJ, Chevallier P, Planchon O (1991) The prediction of hillslope paths for distributed hydrological modeling using digital terrain models. Hydrol Process 5:59–79. doi: hyp.3360050106/hyp.3360050106 CrossRefGoogle Scholar
  46. Renschler CS (2005) Scales and uncertainties in volcano hazard prediction—optimizing the use of GIS and models. J Volcanol Geotherm Res 139:73–87. doi: 10.1016/j.jvolgeores.2004.06.016 CrossRefGoogle Scholar
  47. Rickenmann D (1999) Empirical relationships for debris flows. Nat Haz 19:47–77. doi: 10.1023/A:1008064220727 CrossRefGoogle Scholar
  48. SAC8 (2007) Assessment of the hazards and risks associated with the Soufrière Hills Volcano, Montserrat: Eighth Report of the Scientific Advisory Committee on Montserrat Volcanic Activity, 20th-22nd March. MVO. http://www.mvo.ms/resources/downloads/viewcategory/37-sac-reports Cited 01 May 2010
  49. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177CrossRefGoogle Scholar
  50. Schilling SP (1998) LAHARZ, GIS programs for automated mapping of lahar-inundation hazard zones. US Geol Surv Open-File Rep, 93–638:1–79Google Scholar
  51. Scott KM, Macias JL, Naranjo JA, Rodriguez S, McGeehin JP (2001) Catastrophic debris floes transformed from landslides in volcanic terrains: mobility, hazard assessment, and mitigation strategies. US Geol Surv Prof Pap 1630Google Scholar
  52. Smemoe CM, Nelson EJ, Zundel AK, Woodruff Miller A (2007) Demonstrating floodplain uncertainty using flood probability maps. J Am Water Resour Assoc 43:359–371. doi: 10.1111/j.1752-1688.2007.00028.x CrossRefGoogle Scholar
  53. Sosio R, Crosta GB, Frattini P (2007) Field observations, rheological testing and numerical modelling of a debris-flow event. Earth Surf Process Landforms 32:290–306. doi: hyp.3360050106/esp.1391 CrossRefGoogle Scholar
  54. Sparks RSJ, Young SR (2002) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999: overview of scientific results. In Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc London Mem 21:45–69. doi: 10.1144/GSL.MEM.2002.021.01.03
  55. Stevens NF, Manville V, Heron DW (2002) The sensitivity of a volcanic flow model to digital elevation model accuracy: experiments with digitised map contours and interferometric SAR at Ruapehu and Taranaki volcanoes, New Zealand. J Volcanol Geother Res 119:89–105. doi: 10.1016/S0377-0273(02)00307-4 CrossRefGoogle Scholar
  56. Susnik J (2009) Lahars in the Belham River Valley, Montserrat, West Indies. PhD thesis, University of East Anglia, NorwichGoogle Scholar
  57. Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33:309–319. doi: 10.1029/96WR03137 CrossRefGoogle Scholar
  58. Toyos G, Oramas Dorta D, Oppenheimer C, Pareschi MT, Sulpizio R, Zanchetta G (2007) GIS-assisted modellung for debris flow hazard assessment based on the events of Sarno, Southern Italy: Part 1. Maximum run-out. Earth Surf Process Landforms 32:1491–1502. doi: hyp.3360050106/esp.1640 CrossRefGoogle Scholar
  59. Vallance JW (2000) Lahars. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 601–616Google Scholar
  60. Wadge G, Mattioli GS, Herd RA (2006) Ground deformation at Soufriere Hills Volcano, Montserrat during 1998–2000 measured by radar interferometry and GPS. J Volcanol Geotherm Res 52:157–173. doi: 10.1016/j.jvolgeores.2005.11.007 CrossRefGoogle Scholar
  61. Williams R, Stinton AJ, Sheridan MF (2008) Evaluation of the Titan2D two-phase flow model using an actual event: case study of the 2005 Vazcun Valley lahar. J Volcanol Geotherm Res 177:760–766. doi: 10.1016/j.jvolgeores.2008.01.045 CrossRefGoogle Scholar
  62. Zerger A (2002) Examining GIS decision utility for natural hazard risk modelling. Environ Model Softw 17:287–294. doi: 10.1016/S1364-8152(01)00071-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. R. Darnell
    • 1
  • J. Barclay
    • 1
  • R. A. Herd
    • 1
  • J. C. Phillips
    • 2
  • A. A. Lovett
    • 1
  • P. Cole
    • 3
    • 4
  1. 1.School of Environmental SciencesUniversity of East AngliaNorwichUK
  2. 2.School of Earth SciencesUniversity of BristolBristolUK
  3. 3.Montserrat Volcano ObservatoryWest IndiesMontserrat
  4. 4.Seismic Research CentreUniversity of the West IndiesWITrinidad and Tobago

Personalised recommendations