Bulletin of Volcanology

, Volume 74, Issue 5, pp 1213–1233 | Cite as

The geological evolution of Merapi volcano, Central Java, Indonesia

  • Ralf Gertisser
  • Sylvain J. Charbonnier
  • Jörg Keller
  • Xavier Quidelleur
Research Article

Abstract

Merapi is an almost persistently active basalt to basaltic andesite volcanic complex in Central Java (Indonesia) and often referred to as the type volcano for small-volume pyroclastic flows generated by gravitational lava dome failures (Merapi-type nuées ardentes). Stratigraphic field data, published and new radiocarbon ages in conjunction with a new set of 40K–40Ar and 40Ar–39Ar ages, and whole-rock geochemical data allow a reassessment of the geological and geochemical evolution of the volcanic complex. An adapted version of the published geological map of Merapi [(Wirakusumah et al. 1989), Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000] is presented, in which eight main volcano stratigraphic units are distinguished, linked to three main evolutionary stages of the volcanic complex—Proto-Merapi, Old Merapi and New Merapi. Construction of the Merapi volcanic complex began after 170 ka. The two earliest (Proto-Merapi) volcanic edifices, Gunung Bibi (109 ± 60 ka), a small basaltic andesite volcanic structure on Merapi’s north-east flank, and Gunung Turgo and Gunung Plawangan (138 ± 3 ka; 135 ± 3 ka), two basaltic hills in the southern sector of the volcano, predate the Merapi cone sensu stricto. Old Merapi started to grow at ~30 ka, building a stratovolcano of basaltic andesite lavas and intercalated pyroclastic rocks. This older Merapi edifice was destroyed by one or, possibly, several flank failures, the latest of which occurred after 4.8 ± 1.5 ka and marks the end of the Old Merapi stage. The construction of the recent Merapi cone (New Merapi) began afterwards. Mostly basaltic andesite pyroclastic and epiclastic deposits of both Old and New Merapi (<11,792 ± 90 14C years BP) cover the lower flanks of the edifice. A shift from medium-K to high-K character of the eruptive products occurred at ~1,900 14C years BP, with all younger products having high-K affinity. The radiocarbon record points towards an almost continuous activity of Merapi since this time, with periods of high eruption frequency interrupted by shorter intervals of apparently lower eruption rates, which is reflected in the geochemical composition of the eruptive products. The Holocene stratigraphic record reveals that fountain collapse pyroclastic flows are a common phenomenon at Merapi. The distribution and run-out distances of these flows have frequently exceeded those of the classic Merapi-type nuées ardentes of the recent activity. Widespread pumiceous fallout deposits testify the occurrence of moderate to large (subplinian) eruptions (VEI 3–4) during the mid to late Holocene. VEI 4 eruptions, as identified in the stratigraphic record, are an order of magnitude larger than any recorded historical eruption of Merapi, except for the 1872 AD and, possibly, the October–November 2010 events. Both types of eruptive and volcanic phenomena require careful consideration in long-term hazard assessment at Merapi.

Keywords

Merapi Stratigraphy Chronology Radiocarbon dating K–Ar dating Ar–Ar dating Merapi-type volcanism 

Notes

Acknowledgments

We gratefully acknowledge our colleagues at the Merapi Volcano Observatory (BPPTK) in Yogyakarta for their generosity and support over many years. Sutisna, Dedi, Budi, Sony and Biyanto are thanked for the logistical support in Indonesia and for bringing us to the most remote parts of Merapi. Pierre-Yves Gillot (Université Paris-Sud, Orsay) and Simon Kelley (The Open University) kindly provided access to their K–Ar and Ar–Ar dating facilities, respectively. We appreciate the stimulating discussions about Merapi with Supriyati Andreastuti, Sutikno Bronto, Mary-Ann del Marmol, Alain Gourgaud, Chris Newhall, Lothar Schwarzkopf, Valentin Troll and Barry Voight, and the insightful reviews by Chris Newhall and Alain Gourgaud. Funding was provided primarily by the Deutsche Forschungsgemeinschaft (German Research Foundation). Financial support from the Natural Environment Research Council (UK), the Mineralogical Society of Great Britain and Ireland, and the Research Institute for the Environment, Physical Sciences and Applied Mathematics (EPSAM) at Keele University is also acknowledged.

Supplementary material

445_2012_591_MOESM1_ESM.xlsx (56 kb)
Supplementary Table 1Merapi radiocarbon databasea (XLSX 56 kb)
445_2012_591_MOESM2_ESM.xlsx (82 kb)
Supplementary Table 2Merapi whole-rock geochemistry database (XLSX 81 kb)

References

  1. Alvarado GE, Soto GJ (2002) Pyroclastic flow generated by crater-wall collapse and outpouring of the lava pool of Arenal Volcano, Costa Rica. Bull Volcanol 63:557–568CrossRefGoogle Scholar
  2. Andreastuti SD (1999) Stratigraphy and geochemistry of Merapi Volcano, Central Java, Indonesia: implication for assessment of volcanic hazards. PhD thesis, University of Auckland, New ZealandGoogle Scholar
  3. Andreastuti SD, Alloway BV, Smith IEM (2000) A detailed tephrostratigraphic framework at Merapi Volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment. J Volcanol Geotherm Res 100:51–67CrossRefGoogle Scholar
  4. Bahar I (1984) Contribution à la connaissance du volcanisme indonésien: le Merapi (Centre Java); cadre structural, pétrologie, géochimie et implications volcanologiques. PhD thesis, Université des Sciences et Techniques du Languedoc, MontpellierGoogle Scholar
  5. Berthommier PC (1990) Etude volcanologique du Merapi (Centre-Java). Téphrostratigraphie et chronologie - produits éruptifs. PhD thesis, Université Blaise Pascal, Clermont-FerrandGoogle Scholar
  6. Camus G, Gourgaud A, Mossand-Berthommier P-C, Vincent PM (2000) Merapi (Central Java, Indonesia): an outline of the structural and magmatological evolution, with a special emphasis to the major pyroclastic events. J Volcanol Geotherm Res 100:139–163CrossRefGoogle Scholar
  7. Cas RAF, Wright JV (1987) Volcanic successions—modern and ancient. Chapman & Hall, LondonCrossRefGoogle Scholar
  8. Cassignol C, Gillot P-Y (1982) Range and effectiveness of unspiked potassium–argon dating: experimental groundwork and applications. In: Odin GS (ed) Numerical dating in stratigraphy. Wiley, New York, pp 159–179Google Scholar
  9. Charbonnier SJ, Gertisser R (2008) Field observations and surface characteristics of pristine block-and-ash flow deposits from the 2006 eruption of Merapi Volcano, Java, Indonesia. J Volcanol Geotherm Res 177:971–982CrossRefGoogle Scholar
  10. Cole PD, Calder ES, Sparks RSJ, Clarke AB, Druitt TH, Young SR, Herd RA, Harford CL, Norton GE (2002) Deposits from dome-collapse and fountain-collapse pyroclastic flows at Soufrière Hills Volcano, Montserrat. In: Druitt TH and Kokelaar BP (eds) The eruption of Soufrière Hills volcano, Montserrat, from 1995 to 1999. Geol Soc Lond Mem 21:231–262Google Scholar
  11. Cole PD, Fernandez E, Duarte E, Duncan AM (2005) Explosive activity and generation mechanisms of pyroclastic flows at Arenal volcano, Costa Rica between 1987 and 2001. Bull Volcanol 67:695–716CrossRefGoogle Scholar
  12. Deino A, Potts R (1992) Age-probability spectra for examination of single-crystal 40Ar/39Ar dating results: examples from Olorgesailie, Southern Kenya Rift. Quat Int 13(14):47–53CrossRefGoogle Scholar
  13. Del Marmol MA (1989) The petrology and geochemistry of Merapi Volcano, Central Java, Indonesia. PhD thesis, The Johns Hopkins University, BaltimoreGoogle Scholar
  14. Djumarma A, Bronto S, Bahar I, Suparban F, Sukhyar R, Newhall C, Holcomb RT, Banks NG, Torley R, Lockwood JP, Tilling RI, Rubin M, Del Marmol MA (1986) Did Merapi volcano (Central Java) erupt catastrophically in 1006 A.D.? Abstract, IAVCEI Internat Volcanol Congr 1986, Rotorua, p 236Google Scholar
  15. Escher BG (1933a) On a classification of central eruptions according to gas pressure of the magma and viscosity of the lava. Leidsche Geol Med 6:45–49Google Scholar
  16. Escher BG (1933b) On the character of the Merapi eruption in Central Java. Leidsche Geol Med 7:51–59Google Scholar
  17. Gertisser R (2001) Gunung Merapi (Java, Indonesien): Eruptionsgeschichte und magmatische Evolution eines Hochrisiko-Vulkans. PhD thesis, Universität Freiburg, GermanyGoogle Scholar
  18. Gertisser R, Keller J (2000) Distribution, thickness, volume and age of pumiceous tephra-fall deposits from major explosive eruptions of Merapi volcano, Central Java, Indonesia. Mitt Dt Geophys G Sonderb 4:1–6Google Scholar
  19. Gertisser R, Keller J (2003a) Temporal variations in magma composition at Merapi Volcano (Central Java, Indonesia): magmatic cycles during the past 2,000 years of explosive activity. J Volcanol Geotherm Res 123:1–23CrossRefGoogle Scholar
  20. Gertisser R, Keller J (2003b) Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda Arc magma genesis. J Petrol 44:457–486CrossRefGoogle Scholar
  21. Gertisser R, Cassidy NJ, Charbonnier SJ, Nuzzo L, Preece K (2012) Overbank block-and-ash flow deposits and the impact of valley-derived, unconfined flows on populated areas at Merapi volcano, Java, Indonesia. Nat Hazards 60:623–648CrossRefGoogle Scholar
  22. Gertisser R, Charbonnier SJ, Troll VR, Keller J, Preece K, Chadwick JP, Barclay J, Herd RA (2011) Merapi (Java, Indonesia): anatomy of a killer volcano. Geol Today 27:57–62CrossRefGoogle Scholar
  23. Gillot PY, Cornette Y (1986) The Cassignol technique for potassium–argon dating, precision and accuracy: examples from late Pleistocene to recent volcanics from southern Italy. Chem Geol 59:205–222Google Scholar
  24. Gillot PY, Cornette Y, Max N, Floris B (1992) Two reference materials, trachytes MDO-G and ISH-G, for argon dating (K-Ar and 40Ar/39Ar) of Pleistocene and Holocene rocks. Geostand Newsl 16:55–60CrossRefGoogle Scholar
  25. Gillot PY, Hildenbrand A, Lefèvre JC, Albore-Livadie C (2006) The K/Ar dating method: principle, analytical techniques, and application to Holocene volcanic eruptions in Southern Italy. Acta Vulcanol 18:55–66Google Scholar
  26. Gomez C, Janin M, Lavigne F, Gertisser R, Charbonnier S, Lahitte P, Hadmoko SR, Fort M, Wassmer P, Degroot V, Murwanto H (2010) Borobudur, a basin under volcanic influence: 361,000 years BP to present. J Volcanol Geotherm Res 196:245–264CrossRefGoogle Scholar
  27. Grandjean JB (1931) Korte mededeeling over de uitbarsting van den Merapi op 18 December 1930. De Mijning 12(1):4–6Google Scholar
  28. Hall ML, Robin C, Beate B, Mothes P, Monzier M (1999) Tungurahua Volcano, Ecuador: structure, eruptive history and hazards. J Volcanol Geotherm Res 91:1–21CrossRefGoogle Scholar
  29. Hamilton W (1979) Tectonics of the Indonesian region. US Geol Surv Prof Pap 1078:1–345Google Scholar
  30. Hartmann M (1934a) Der grosse Ausbruch des Vulkanes G. Merapi (Mittel Java) im Jahre 1872. Natuurk Tijdschr Nederl-Indië 94:189–209Google Scholar
  31. Hartmann M (1934b) Die vulkanische Tätigkeit des Merapi Vulkanes (Mittel Java) in seinem östlichen Gipfelgebiete zwischen 1902 und 1908. De Ing Nederl-Indië 5:61–73Google Scholar
  32. Hartmann M (1935a) Die Ausbrüche des G. Merapi (Mittel-Java) bis zum Jahre 1883. Neues Jahrb Mineral Geol Paläontol 75:127–162Google Scholar
  33. Hartmann M (1935b) Die große Ausbruchsperiode des Merapi im 2. Halbjahr 1934. Zeitschr Vulkanol 16:199–205Google Scholar
  34. Hartmann M (1936) Die Lavadomgebilde des Merapi (M.J.) nach dem grossen Ausbruch im Jahre 1930. Zeitschr Vulkanol 16:248–258Google Scholar
  35. Junghuhn FW (1853–1854) Java, deszelfs gedaante, Bekleeding en Inwendige Structuur, 2nd edn. Uitgave CW Mieling, s’Gravenhage, pp 417–465Google Scholar
  36. Kemmerling GLL (1921) De hernieuwde werking van den vulkan G. Merapi (Midden Java) van den begin Augustus 1920 tot en met einde Februari 1921. Vulkanol Seismol Med 3:1–30Google Scholar
  37. Lavigne F, Thouret JC, Voight B, Suwa H, Sumaryono A (2000) Lahars at Merapi volcano, central Java: an overview. J Volcanol Geotherm Res 100:423–456CrossRefGoogle Scholar
  38. Le Maitre RW (ed), Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova J, Keller J, Lameyre J, Sabine PA, Schmidt R, Sørensen H, Woolley AR (2002) Igneous rocks. A classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks. University Press, CambridgeGoogle Scholar
  39. Le Pennec J-L, Jaya D, Samaniego P, Ramón P, Moreno Yánez S, Egred J, van der Plicht J (2008) The AD 1300–1700 eruptive periods at Tungurahua volcano, Ecuador, revealed by historical narratives, stratigraphy and radiocarbon dating. J Volcanol Geotherm Res 176:70–81CrossRefGoogle Scholar
  40. McCormac FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHCal04 Southern Hemisphere Calibration 0–1000 cal BP. Radiocarbon 46:1087–1092Google Scholar
  41. Miyabuchi Y, Watanabe K, Egawa Y (2006) Bomb-rich basaltic pyroclastic flow deposit from Nakadake, Aso Volcano, southwestern Japan. J Volcanol Geotherm Res 155:90–103CrossRefGoogle Scholar
  42. Moore J, Melson WG (1969) Nuées ardentes of the 1968 eruption of Mayon Volcano, Philippines. Bull Volcanol 33:600–620CrossRefGoogle Scholar
  43. Neumann van Padang M (1933) De Uitbarsting van den Merapi (Midden Java) in den Jaren 1930–1931. Vulkanol Seismol Med 12:1–117Google Scholar
  44. Neumann van Padang M (1936) Die Tätigkeit des Merapi-Vulkans (Mittel-Java) in den Jahren 1883–1888. Zeitschr Vulkanol 17:93–113Google Scholar
  45. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238CrossRefGoogle Scholar
  46. Newhall CG, Bronto S, Alloway B, Banks NG, Bahar I, Del Marmol MA, Hadisantono RD, Holcomb RT, McGeehin J, Miksic JN, Rubin M, Sayudi SD, Sukhyar R, Andreastuti S, Tilling RI, Torley R, Trimble D, Wirakusumah AD (2000) 10,000 years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications. J Volcanol Geotherm Res 100:9–50CrossRefGoogle Scholar
  47. Odin GS et al (1982) Interlaboratory standards for dating purposes. In: Odin GS (ed) Numerical dating in stratigraphy. Wiley, Chichester, pp 123–150Google Scholar
  48. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15CrossRefGoogle Scholar
  49. Quidelleur X, Gillot PY, Soler V, Levèvre JC (2001) K/Ar dating extended into the last millennium: application to the youngest effusive episode of the Teide volcano (Canary Islands, Spain). Geophys Res Lett 28:3067–3070CrossRefGoogle Scholar
  50. Reck H (1931) Der Merapi-Vulkan auf Java und sein Ausbruch im Dezember 1930. Naturwiss 19:369–373CrossRefGoogle Scholar
  51. Reck H (1935) Der Ausbruchscyklus des Merapi in den Jahren 1933/34. Naturwiss 48:812–816CrossRefGoogle Scholar
  52. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 Terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058Google Scholar
  53. Siebert L, Simkin T, Kimberly P (2011) Volcanoes of the world. University of California Press, BerkeleyGoogle Scholar
  54. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  55. Stuiver M, Polach HA (1977) Discussion. Reporting of 14C data. Radiocarb 19:355–363Google Scholar
  56. Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230Google Scholar
  57. Stuiver M, Reimer PJ, Reimer RW (2005) CALIB 5.0 [WWW program and documentation]Google Scholar
  58. Taverne NJM (1925) G. Merapi in 1924. Natuurk Tijdschr Nederl-Indië 85:137–149Google Scholar
  59. Taverne NJM (1933) De G. Merapi (Midden-Java) in 1922. Vulkanol Ber XXI-XXIX:2–26Google Scholar
  60. Van Bemmelen RW (1949) The geology of Indonesia, vol 1A: General Geology. GPO, The HagueGoogle Scholar
  61. Van Bemmelen RW (1956) The influence of geologic events on human history (an example from Central Java). Verh Kon Ned Geol Mijnb Genoot Geol 16:20–36Google Scholar
  62. Van Boekhold F (1792) Relaas van een togt naar den Brandenden berg op Java, 17/18 juli 1786. Verh Bataviaasch Genoot Kunsten Wet 6:8–12 (2nd edn in 1827)Google Scholar
  63. Venzke E, Wunderman R W, McClelland L, Simkin T, Luhr JF, Siebert L, Mayberry G, Sennert S (eds) (2002) Global volcanism, 1968 to the present. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-4 (http://www.volcano.si.edu/reports/). Accessed 1 Oct 2011
  64. Verbeek RDM, Fennema R (1896) Geologische beschrijving van Java and Madoera. Two volumes and a folio with maps and sections. Amsterdam, pp 302–305, 319–322, 347–348, 947, 950, 957Google Scholar
  65. Voight B, Constantine EK, Siswowidjoyo S, Torley R (2000) Historical eruptions of Merapi volcano, Central Java, Indonesia, 1768–1998. J Volcanol Geotherm Res 100:69–138CrossRefGoogle Scholar
  66. Wirakusumah AD, Juwarna H, Loebis H (1989) Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ralf Gertisser
    • 1
  • Sylvain J. Charbonnier
    • 1
    • 2
  • Jörg Keller
    • 3
  • Xavier Quidelleur
    • 4
    • 5
  1. 1.School of Physical and Geographical SciencesKeele UniversityKeeleUK
  2. 2.Department of GeologyUniversity of South FloridaTampaUSA
  3. 3.Institut für Geowissenschaften, Mineralogie-GeochemieAlbert-Ludwigs-UniversitätFreiburg im BreisgauGermany
  4. 4.Université Paris-Sud, Laboratoire IDESOrsayFrance
  5. 5.CNRSOrsayFrance

Personalised recommendations