Advertisement

Bulletin of Volcanology

, Volume 74, Issue 5, pp 1235–1254 | Cite as

The historic magmatic-hydrothermal eruption of the Breccia di Commenda, Vulcano, Italy

  • L. GurioliEmail author
  • E. Zanella
  • A. Gioncada
  • A. Sbrana
Research Article

Abstract

The historic Breccia di Commenda (BC) explosive eruption of Vulcano (Aeolian Islands, Italy) opened with a phase that generated a gray fine ash layer dispersed to the northwest (phase 1). The eruption continued with a dilute pyroclastic density current (PDC) that was dispersed to the east, followed by the emplacement of radially distributed, topographically controlled PDC deposits (phase 2). The last phase of the eruption produced a sequence of accretionary lapilli and gray fine ash dispersed toward the southeast (phase 3). The most impressive feature of the BC is its high lithic/juvenile clast ratio and the yellow color of the deposits of phase 2. Lithic fragments are mainly hydrothermally altered rocks, in the silicic and advanced argillic facies. Juvenile fragments, ranging from 20 % to 40 % by volume, are mainly confined to the ash component of the deposits and comprise rhyolitic to trachyandesite, poorly to non-vesicular fragments. The fine ash fraction of the deposits is richer in S, Cu, Zn, Pb, and As than the BC juvenile lapilli and bombs, and also the juvenile components of other La Fossa units, suggesting that the BC formed in the presence of an anomalously high amount of S and metals. Sulfur and metals may have been carried as aerosols by chloride- and sulfate-bearing micro-crystals, derived from the condensation of magmatic gas in the eruptive cloud. The high content of hydrothermally altered lithic clasts in the deposits suggests that explosions involved the fluid-saturated hydrothermally altered rocks residing in the conduit zone. However, the presence of a juvenile component in the deposits supports the idea that this explosion may have been triggered by the ascent of new magma. We categorize this eruption as magmatic-hydrothermal to emphasize that in this type of phreatomagmatic eruption the external water was an active hydrothermal system. Rock magnetic temperatures of non-altered lava lithic fragments indicate a uniform deposit temperature for the PDC deposits of between 200 and 260 °C, with a maximum at 280 °C. These homogeneous, relatively low temperatures are consistent with the idea that the phase 2 explosions involved the expansion of abundant steam from the flashing of the hydrothermal system. In addition, recent paleomagnetic dating of the BC provides an age of between 1000 and 1200 AD, younger than that reported in the previously published data, suggesting that previous interpretations and the recent history of La Fossa and Mt. Pilato require re-evaluation.

Keywords

Phreatomagmatic Magmatic-hydrothermal eruptions Eruptive mechanisms Hydrothermal systems Vulcano 

Notes

Acknowledgement

The authors are grateful to P. Dellino and L. La Volpe for numerous field discussions both on the BC and on La Fossa stratigraphy in general. S. Marchetti is thanked for her great work done in 1992–1993 as part of her undergraduate thesis. Thanks to A. Freundt and two anonymous reviewers for their formal review on an early version of this manuscript, and to R. Cioni, B. Houghton and A. Harris for informal reviews of the draft of the revised manuscript. A special thank you to A. Freundt who agreed to review the paper again and made great corrections. Thanks to L. Morgan and L. Mastin for all their advice that greatly improved this manuscript. We are extremely grateful to the editor, J McPhie, for her patience and hard work in getting this manuscript into shape. M. Menichini helped with X-ray fluorescence analysis and F. Colarieti with SEM-EDS (both DST, University of Pisa), and L. Bagnasco performed rock magnetic measurements (University of Turin). This research was supported by a CNR-GNV grant to A. Sbrana for volcanic hazard assessment at Vulcano and by the INGV-DPC Project 2004–2006 (V3_5-Vulcano, Task 1: Eruptive products, eruptive scenarios and hazard, P.I. G. De Astis). This is Laboratory of excellence ClerVolc contribution n° 17.

Supplementary material

445_2012_590_MOESM1_ESM.xls (74 kb)
Supporting Material 1 Grain size and thickness data of the BC. Symbols: Section, studied log; Phase, phase of the BC eruption (Fig. 2a); Sample, collected samples; Bed t , bed thickness variation; LM, maximum lithic clast diameter; Φ5 up to Φ95percentile; Mz, mean diameter, from Folk and Ward (1957); Md Φ , mean diameter and σΦ, sorting, from Inman (1952); F1, weight percentage of fractions finer than 1 mm; F2, weight percentage of fractions finer than 1/16 mm; L, weight percentage of lapilli; CA, weight percentage of coarse ash; J, juvenile clasts; C, crystals; Li, lithic clasts; Hydro, Hydrothermally altered clasts; Trachy, Trachytic lava clasts; Flow, Flow banded recrystallized rhyolites; Sub, Subvolcanic latites and trachytes (XLS 74 kb)

References

  1. Ammann CM, Meehl GA, Washington WM, Zender CS (2003) A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys Res Lett 30. doi: 10.1029/2003GL016875
  2. Arnott RWC, Hand BM (1989) Bed forms, primary stuctures on grain fabric in the presence of suspended sediment rain. J Sed Petrol 59:1062–1069Google Scholar
  3. Arribas Jr A (1995) Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. In: Thompson JFH (Ed.), Magmas Fluids and Ore Deposits, vol. 23. Mineralogical Association of Canada Short Course, pp. 419–454Google Scholar
  4. Arrighi S, Tanguy JC, Rosi M (2006) Eruptions of the last 2200 years at Vulcano and Vulcanello (Aeolian Islands, Italy) dated by high accuracy archeomagnetism. Phys Earth Planet Int. doi: 10.1016/j.pepi.2006.07.010
  5. Barberi F, Cioni R, Rosi M, Santacroce R, Sbrana A, Vecci R (1989) Magmatic and phreatomagmatic phases in explosive eruptions of Vesuvius as deduced by grain-size and compositional analysis of pyroclastic deposits. J Volcanol Geotherm Res 38:287–307CrossRefGoogle Scholar
  6. Barberi F, Neri G, Valenza M, Villari L (1991) 1987–1990 unrest at Vulcano. Acta Vulcanol 1:269–276Google Scholar
  7. Barberi F, Gandino A, Gioncada A, La Torre P, Sbrana A, Zenucchini C (1994) The deep structure of the Eolian arc (Filicudi–Panarea–Vulcano sector) in light of gravity, magnetic and volcanological data. J Volcanol Geotherm Res 61:189–206CrossRefGoogle Scholar
  8. Bardot L, McClelland E (2000) The reliability of emplacement temperature estimates using palaeomagnetic methods: a case study from Santorini, Greece. Geophys J Int 143:39–51CrossRefGoogle Scholar
  9. Bigazzi G, Bonadonna F (1973) Fission track dating of the obsidian of Lipari Island (Italy). Nature 242:322–323CrossRefGoogle Scholar
  10. Boyce AJ, Fulignati P, Sbrana A, Fallick AE (2007) Fluids in early stage hydrothermal alteration of high-sulfidation epithermal systems: a view from the Vulcano active hydrothermal system (Aeolian Islands, Italy). J Volcanol Geotherm Res 166:76–90CrossRefGoogle Scholar
  11. Browne PRL, Lawless JV (2001) Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere. Earth Sci Rev 52:299–331CrossRefGoogle Scholar
  12. Buesh DC (1992) Incorporation and redistribution of locally derived lithic fragments within a pyroclastic flow. Geol Soc Am Bull 104:1193–1207CrossRefGoogle Scholar
  13. Calvache MR, Williams SN (1992) Lithic-dominated pyroclastic flows at Galeras Volcano, Colombia—an unrecognized volcanic hazard. Geology 20:539–542CrossRefGoogle Scholar
  14. Capaccioni B, Coniglio S (1995) Varicolored and vesiculated tuffs from La Fossa volcano, Vulcano Island (Aeolian Archipelago, Italy): evidence of syndepositional alteration processes. Bull Volcanol 57:61–70CrossRefGoogle Scholar
  15. Capaccioni B, Coniglio S, Fratini F (1991) Clay minerals on recent products of hydromagmatic activity: considerations on their genesis. Acta Vulcanol 1:69–77Google Scholar
  16. Chiodini G, Cioni R, Marini L, Panichi C (1995) Origin of the fumarolic fluids of Vulcano Island, Italy and implications for volcanic surveillance. Bull Volcanol 57(2):99–110Google Scholar
  17. Chough SK, Sohn YK (1990) Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology 37:1115–1135CrossRefGoogle Scholar
  18. Cioni R, Gurioli L, Lanza R, Zanella E (2004) Temperatures of the AD 79 pyroclastic density current deposits (Vesuvius, Italy). J Geophys Res 109:B02207. doi: 10.1029/2002JB002251 CrossRefGoogle Scholar
  19. Clocchiatti R, Gioncada A, Mosbah M, Sbrana A (1994) Possible deep origin of sulfur output at Vulcano. Southern Italy. in the light of melt inclusion studies. Acta Vulcanol 5:49–53Google Scholar
  20. Cortese M, Frazzetta G, La Volpe L (1986) Volcanic history of Lipari (Aeolian Islands) in the last 10.000 years. J Volcanol Geoth Res 27:117–133CrossRefGoogle Scholar
  21. De Astis G, Frazzetta G, La Volpe L (1989) I depositi di riempimento della Caldera del Piano e i depositi della Lentia. Boll GNV 2:763–778Google Scholar
  22. De Astis G, Dellino P, La Volpe L, Lucchi F, Tranne CA (2006) In: La Volpe L, De Astis G (eds) Geological map of the Vulcano Island. Litografia Artistica Cartografica (LAC), Firenze ItalyGoogle Scholar
  23. Dellino P (1997) Scenario eruttivo ed eruzione massima attesa. Progetto Vulcano, Risultati delle Attività di ricerca 1993–1995, Felici EditoreGoogle Scholar
  24. Dellino P, La Volpe L (1997) Stratigrafia, dinamiche eruttive e deposizionali, scenario eruttivo e valutazioni di pericolosità a La Fossa di Vulcano. CNR-Gruppo Nazionale per la Vulcanologia, Spec. Vol. Vulcano-Progetto triennale 1993–1995, pp. 214–237Google Scholar
  25. Dellino P, De Astis G, La Volpe L, Mele D, Sulpizio R (2011) Quantitative hazard assessment of phreatomagmatic eruptions at Vulcano (Aeolian Islands, Southern Italy) as obtained by combining stratigraphy, event statistics and physical modeling. J Volcanol Geoth Res 201:364–384CrossRefGoogle Scholar
  26. Druitt TH (1992) Emplacement of the 18 May 1980 lateral blast deposits ENE of Mount St. Helens, Washington. Bull Volcanol 54:554–572CrossRefGoogle Scholar
  27. Folk RL, Ward WC (1957) Brazos river bar: a study in the significance of grain-size parameters. J Sed Petrol 27:3–26Google Scholar
  28. Franzini M, Leoni L, Saitta M (1975) Revisione di una metodologia analitica per fluorescenza-X basata sulla correzione completa sugli effetti di matrice. Rend Soc It Mineral Petrol 31:365–378Google Scholar
  29. Frazzetta G, La Volpe L (1991) Volcanic history and maximum expected eruption at "La Fossa di Vulcano" (Aeolian Islands, Italy). Acta Vulcanol 1:107–114Google Scholar
  30. Frazzetta G, La Volpe L, Sheridan MF (1983) Evolution of the Fossa cone. J Vulcanol Geotherm Res 17:329–360CrossRefGoogle Scholar
  31. Frazzetta G, Gillot PY, La Volpe L, Sheridan MF (1984) Volcanic hazards at Fossa of Vulcano: data from the last 6,000 years. Bull Volcanol 47:105–124CrossRefGoogle Scholar
  32. Freundt A, Schmincke HU (1985) Lithic-enriched segregation bodies in pyroclastic flow deposits of Laacher See Volcano (East Eifel, Germany). J Geol 25:193–224Google Scholar
  33. Fulignati P, Gioncada A, Sbrana A (1998) Geologic model of the magmatic-hydrothermal system of Vulcano (Aeolian Island Italy). Mineral Petrol 62:195–222CrossRefGoogle Scholar
  34. Fulignati P, Gioncada A, Sbrana A (1999) Rare-earth element (REE) behaviour in the alteration facies of the active magmatic-hydrothermal system of Vulcano (Aeolian Islands Italy). J Volcanol Geotherm Res 88:325–342CrossRefGoogle Scholar
  35. Fulignati P, Sbrana A, Luperini W, Greco V (2002) Formation of rock coatings induced by the acid fumarole plume of the passively degassing volcano of La Fossa (Vulcano Island, Italy). J Volcanol Geotherm Res 115:397–410CrossRefGoogle Scholar
  36. Gallet Y, Genevey A, Le Goff M (2002) Three millennia of directional variation of the Earth's magnetic field in Western Europe as revealed by archaeological artefacts. Phys Earth Planet Int 131:81–89CrossRefGoogle Scholar
  37. Gioncada A (1997) L’attività eruttiva degli ultimi 50000 anni di Vulcano (Eolie): aspetti vulcanologici e magmatologici”. Tesi di Dottorato, Università degli Studi di Pisa.Google Scholar
  38. Gioncada A, Sbrana A (1991) La Fossa Caldera, Vulcano: inferences from deep drillings. Acta Vulcanol 1:115–126Google Scholar
  39. Gioncada A, Gurioli L, Sbrana A (1995) The hydrothermal-magmatic eruption of Breccia di Commenda. Per Miner 64:191–192Google Scholar
  40. Gioncada A, Sbrana A, Bottazzi P, Clocchiatti R, Del Moro A, Joron JL, Ottolini L, Pinarelli L (1997) Il sistema di alimentazione di La Fossa. Progetto Vulcano, Risultati delle Attività di ricerca 1993–1995, Felici EditoreGoogle Scholar
  41. Gioncada A, Clocchiatti R, Sbrana A, Bottazzi P, Massare D, Ottolini L (1998) A study of melt inclusions at Vulcano (Aeolian islands, Italy): insight on the primitive magmas and on the volcanic feeding system. Bull Volcanol 60:286–306CrossRefGoogle Scholar
  42. Gurioli L (1994) Studio vulcanologico dell’eruzione della breccia di Commenda e considerazioni stratigrafiche sul ciclo di Commenda e sulla sequenza basale del cilo di Pietre otte. Università di Pisa, Tesi di LauraGoogle Scholar
  43. Gurioli L, Sbrana A (1999) Caratterizzazione stratigrafica e sedimentologica dei depositi dell’eruzione della Breccia di Commenda (Isola di Vulcano) con particolare riferimento ai depositi di flusso piroclastico ricchi in litici relativi alla fase parossistica dell’eruzione. Atti Soc Tosc Sci Nat Mem 106:103–112Google Scholar
  44. Gurioli L, Zanella E, Pareschi MT, Lanza R (2007) Influences of urban fabric on pyroclastic density currents at Pompeii (Italy), part I: flow direction and deposition. J Geophys Res 112, 721 BOS213Google Scholar
  45. Gurioli L, Sulpizio R, Cioni R, Sbrana A, Luperini W, Santacroce R, Andronico D (2010) Pyroclastic flow hazard assessment at Somma-Vesuvius based on the geological record. Bull Volcanol. doi: 10.1007/s00445-010-0379-2
  46. Hedenquist JW (1995) The ascent of magmatic fluid: discharge versus mineralization. In: Thompson JFH (Ed), Magmas Fluids and Ore Deposits, vol 23. Mineralogical Association of Canada Short Course, pp. 263–289Google Scholar
  47. Inman DL (1952) Measures for describing the size distribution of sediments. J Sed Petrol 22:125–145Google Scholar
  48. Keller J (1970) Datierung der obsidiane und bimstuffe von Lipari, N Jb Geol Mh, 90–101Google Scholar
  49. Keller J (1980) The island of Vulcano. Rend Soc Ital Min Petrol 36:369–414Google Scholar
  50. Kirschvink JL (1980) The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J Roy Astron Soc 62:699–718CrossRefGoogle Scholar
  51. Lanos P, Le Goff M, Kovacheva M, Schnepp E (2005) Hierarchical modelling of archaeomagnetic data and curve estimation by moving average technique. Geophys J Int 160:440–476CrossRefGoogle Scholar
  52. Leonhardt L, Matzka J, Nichols ARL, Dingwell DB (2006) Cooling rate correction of paleointensity determination for volcanic glasses by relaxation geospeedometry. Earth Planet Sci Lett 243:282–292CrossRefGoogle Scholar
  53. Lepel E, Stefansson K, Zoller W (1978) The enrichment of volatile elements in the atmosphere by volcanic activity: Angustine Volcano 1976. J Geophys Res 83:6213–6220CrossRefGoogle Scholar
  54. Lucchi F, Tranne CA, Calanchi N, Pirazzoli P, Romagnoli C, Radtke U, Reyss JL, Rossi PL (2004) Stratigraphic constraints to date late Quaternary ancient shorelines and to evaluate vertical movements at Lipari (Aeolian Islands): Quaternary International 115/116, 105–115, doi:  10.1016/S1040-6182(03)00100-9
  55. Malin MC, Dzurisin D, Sharp RP (1983) Stripping of Keanakakoi tephra on Kilaua Volcano, Hawaii. Geol Soc Am Bull 94:1148–1158CrossRefGoogle Scholar
  56. Mastin LG (1991) The roles of magma and groundwater in the phreatic eruptions at Inyo Craters, Long Valley Caldera, California. Bull Volcanol 57:85–98Google Scholar
  57. McClelland EA (1982) Discrimination of TRM and CRM by blocking-temperature spectrum analysis. Phys Earth Planet Int 30:405–414CrossRefGoogle Scholar
  58. Moune S, Gauthier PJ, Delmelle P (2010) Trace elements in the particulate phase of the plume of Masaya Volcano, Nicaragua. J Volcanol Geothermal Res 193:232–244CrossRefGoogle Scholar
  59. Naughton JJ, Greenberg VA, Gognel R (1976) Incrustations and fumarolic condensates at Kilauea. J Volcanol Geothermal Res 1:141–165CrossRefGoogle Scholar
  60. Pavón-Carrasco FJ, Osete ML, Torta JM, Gaya-Piqué LR (2009) A regional archeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: Applications to archeomagnetic dating. Geochem Geophys Geosyst 10, Q03013, doi: 10.1029/2008GC002244
  61. Robb L (2005) Introduction to ore-forming processes. Blackwell Publishing, Malden, MA, 373 pGoogle Scholar
  62. Sheridan MF (1980) Pyroclastic block flow from the September 1976, eruption of La Soufrière volcano, Guadalupe. Bull Volcanol 43:397–402CrossRefGoogle Scholar
  63. Sohn YK, Chough SK (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36:837–855CrossRefGoogle Scholar
  64. Soligo M, De Astis G, Delitala MC, La Volpe L, Taddeucci A, Tuccimei P (2000) Uranium-series disequilibria in the products from Vulcano Island (Sicily, Italy): isotopic chronology and magmatological implications. Acta Vulcanologica 12:49–59Google Scholar
  65. Symonds RB, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic gas studies: methods, results and applications. In: Carroll MR, Holloway JR (Eds.),Volatiles in Magmas: Rev Mineral, Mineral Soc Am, pp. 1–66Google Scholar
  66. Van Der Plas L, Tobi AC (1965) A chart for judging the reliability of point counting results. Am J Sci 263:87–90CrossRefGoogle Scholar
  67. Varekamp JC, Thomas E, Germani M, Buseck PR (1986) Particle chemistry of the volcanic plumes of Mt. Etna and Mt. St. Helens. J Geophys Res 91:B12, 12,233-12,248CrossRefGoogle Scholar
  68. Ventura G (1994) Tectonics, structural evolution and caldera formation on Vulcano Island (Aeolian Archipelago, southern Tyrrheanian Sea). J Volc Geotherm Res 60:207–224CrossRefGoogle Scholar
  69. Watson GS (1956) A test for randomness of directions. Mon Not Roy Astron Soc Geophys Supp 7:160–161CrossRefGoogle Scholar
  70. Wohletz K, Heiken G (1992) Volcanology and Geothermal Energy. Univ. California Press, 432 ppGoogle Scholar
  71. Zanella E (2006) Magnetic chronology in recent volcanic rocks: basic principles and case histories from Aeolian Islands. Acta Vulcanologica 18:35–46Google Scholar
  72. Zanella E, Gurioli L, Pareschi MT, Lanza R (2007) Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 2. Temperature of the deposits and hazard implications. J Geophys Res 112:B05214. doi: 10.1029/2006JB004775 CrossRefGoogle Scholar
  73. Zanella E, Gurioli L, Lanza R, Sulpizio R, Bontempi M (2008) Deposition temperature of the Ad 472 Pollena pyroclastic density current deposits, Somma-Vesuvius. Italy Bull Volcanol. doi: 10.1007/s00445-008-0199-9
  74. Zijderveld JDA (1967) Analysis of results. In: Collinson DW, Creer KM, Runcorn SK (eds) Methods in palaeomagnetism. Elsevier Sci, New York, pp 254–286Google Scholar
  75. Zoller WH, Parrington JR, Phelan Kotra JM (1983) Iridium enrichment in airborne particles from Kilauea volcano: January 1983. Science 222:1118–1121CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • L. Gurioli
    • 1
    • 2
    • 3
    • 7
    Email author
  • E. Zanella
    • 4
    • 5
  • A. Gioncada
    • 6
  • A. Sbrana
    • 6
  1. 1.Laboratoire Magmas et VolcansClermont Université, Université Blaise PascalClermont FerrandFrance
  2. 2.CNRSClermont-FerrandFrance
  3. 3.IRDClermont-FerrandFrance
  4. 4.Dipartimento di Scienze della TerraUniversità di TorinoTorinoItaly
  5. 5.Alpine Laboratory of Paleomagnetism (ALP)PeveragnoItaly
  6. 6.Dipartimento di Scienze della TerraUniversità di PisaPisaItaly
  7. 7.Laboratoire Magmas et VolcansUniv. Blaise Pascal-CNRS OPGCClermont FerrandFrance

Personalised recommendations