Bulletin of Volcanology

, Volume 74, Issue 5, pp 1057–1082 | Cite as

Dynamics, stratigraphy and proximal dispersal of supraglacial tephra during the ice-confined 2004 eruption at Grímsvötn Volcano, Iceland

  • T. C. Jude-Eton
  • T. Thordarson
  • M. T. Gudmundsson
  • B. Oddsson
Research Article


The basaltic, phreatomagmatic eruption of Grímsvötn volcano, Iceland, in November 2004 (G2004) lasted for 5 days, during which time two separate vents were active. Significant deposition of tephra occurred in the first 45 h only. We have subdivided the deposit into seven units (A–G) on the basis of differences in texture, grain size and componentry, and the presence of sharp contacts between the layers. The distribution of tephra lobes was used to infer the vent of origin for each unit. The G2004 deposit is poorly sorted overall and consists of non-vesicular to highly vesicular juvenile components. Units A and B comprise almost exclusively non- to poorly vesicular glass fragments, whereas units C–G contain at least 30 vol.% highly vesicular pumice. The proportion of non-juvenile fragments increases significantly in the final unit (unit F) of the main phase; non-juvenile fragments are restricted to the coarse (>0 Φ) fraction of the deposit. Main phase units C and E account for 80% of the total deposit volume, including the entire distal portion, and are interpreted to represent a mixture of (1) a widely dispersed component that fell from the upper margins of a strongly inclined (∼45°), 6–10 km high plume and (2) a locally dispersed (<3 km from source) component originating from pyroclastic density currents and minor tephra jets.


Grímsvötn Glacio-volcanism Tephra dispersal Phreatomagmatic Basalt Explosive eruption 



The authors gratefully acknowledge the support of the following agencies and individuals, without the help of whom this work would not have been possible: A RANNÍS grant covered analytical and fieldwork costs; TC Jude-Eton received a Rannsóknanámssjóður studentship and another from the University of Edinburgh; JÖRFÍ (the Icelandic Glaciological Society) provided equipment, expertise and assistance in the field. The manuscript was vastly improved by the insightful reviews of Ármann Höskuldsson, Jocelyn McPhie and Ian Skilling.


  1. Albino F, Pinel V, Sigmundsson F (2010) Influence of surface load variations on eruption likelihood: application to two Icelandic subglacial volcanoes, Grímsvötn and Katla. Geophys J Int 181:1510–1524Google Scholar
  2. Alfaro R, Branðsdóttir B, Rowlands DP, White RS, Guðmundsson MT (2007) Structure of the Grímsvötn central volcano under the Vatnajökull icecap, Iceland. Geophys J Int 168:863–876CrossRefGoogle Scholar
  3. Björnsson H (1988) Hydrology of ice caps in volcanic regions. Soc Sci Isl 45:139Google Scholar
  4. Björnsson H (2003) Subglacial lakes and jökulhlaups in Iceland. Glob Planet Chang 35:255–271CrossRefGoogle Scholar
  5. Björnsson H, Guðmundsson MT (1993) Variations in the thermal output of the subglacial Grímsvötn caldera, Iceland. Geophys Res Lett 20:2127–2130CrossRefGoogle Scholar
  6. Calder E, Sparks RSJ, Gardeweg MC (2000) Erosion, transport and segregation of pumice and lithic clasts in pyroclastic flows inferred from ignimbrite at Lascar Volcano, Chile. J Volcanol Geotherm Res 104:201–235CrossRefGoogle Scholar
  7. Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125CrossRefGoogle Scholar
  8. Chough S, Sohn YK (1990) Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology 37:1115–1136CrossRefGoogle Scholar
  9. Cole PD, Guest JE, Duncan AM, Pacheco JM (2001) Capelinhos 1957–1958, Faial, Azores: deposits formed by an emergent surtseyan eruption. Bull Volcanol 63:204–220CrossRefGoogle Scholar
  10. Davies SM, Larsen G, Wastegård S, Turney CSM, Hall VA, Coyle L, Thordarson T (2010) Widespread dispersal of Icelandic tephra: how does the Eyjafjöll eruption of 2010 compare to past Icelandic events? J Quat Sci 25(5):605–611CrossRefGoogle Scholar
  11. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 67:350–357Google Scholar
  12. Folk RL, Ward WC (1957) Brazos River bar [Texas]; a study in the significance of grain size parameters. J Sediment Res 27(1):3–26Google Scholar
  13. Gilbert JS, Lane SJ (1994) The origin of accretionary lapilli. Bull Volcanol 56:398–411Google Scholar
  14. Gudmundsson MT (1989) The Grímsvötn caldera, Vatnajökull: subglacial topography and structure of caldera infill. Jökull 39:1–20Google Scholar
  15. Gudmundsson MT (2005) Subglacial volcanic activity in Iceland. In: Caseldine C, Russell A, Harðardóttir J, Knudsen O (eds) Iceland—modern processes and past environments. Elsevier, New York, p 420Google Scholar
  16. Gudmundsson MT, Högnadóttir TH (2007) Volcanic systems and calderas in the Vatnajökull region, central Iceland: constraints on crustal structure from gravity data. J Geodyn 43:153–169CrossRefGoogle Scholar
  17. Gudmundsson MT, Milsom J (1997) Gravity and magnetic studies of the subglacial Grímsvötn volcano, Iceland: implications for crustal and thermal structure. J Geophys Res 102:7691–7704CrossRefGoogle Scholar
  18. Gudmundsson MT, Sigmundsson F, Björnsson H, Högnadóttir TH (2004) The 1996 eruption at Gjálp, Vatnajökull ice cap, Iceland: efficiency of heat transfer, ice deformation and subglacial water pressure. Bull Volcanol 66:46–65CrossRefGoogle Scholar
  19. Gudmundsson M, Zimanowski B, Jude-Eton TC, Oddsson B, Buttner R, Dellino P, Thordarson, T Larsen G (2009) Energy partitioning in the phreatomagmatic basaltic eruption of Grímsvötn in 2004. In: AGU. San Francisco, pp V11B–1952Google Scholar
  20. Gudmundsson M, Pedersen R, Vogfjord K, Thorbjarnadottir B, Jakobsdottir S, Roberts MJ (2010) Eruptions of Ejyafjallajokull volcano, Iceland. EOS 91(21)Google Scholar
  21. Houghton BF, Wilson CJN, Del Carlo P, Coltelli M, Sable JE, Carey R (2004) The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122 BC. J Volcanol Geotherm Res 137:1–14CrossRefGoogle Scholar
  22. Inman DL (1952) Measures for describing the size distribution of sediments. J Sedimentary Res 22(3):125–145Google Scholar
  23. Jakobsson SP, Guðmundsson MT (2008) Subglacial and intraglacial volcanic formations in Iceland. Jökull 58:179–196Google Scholar
  24. Jones JG (1966) Intraglacial volcanoes of south-west Iceland and their significance in the interpretation of the form of the marine basaltic volcanoes. Nature 212:586–588CrossRefGoogle Scholar
  25. Jones JG (1970) Intraglacial volcanoes of the Laugarvatn region, southwest Iceland, II. J Geol Soc Lond 78:127–140Google Scholar
  26. Jude-Eton TC (2011) Eruption dynamics within an emergent subglacial setting: a case study of the 2004 eruption of Grímsvötn volcano, Iceland. Dept. GeoSciences, University of Edinburgh. PhD. Thesis: pp 300Google Scholar
  27. Larsen G (2002) A brief overview of eruptions from ice-covered and ice-capped volcanic systems in Iceland during the past 11 centuries: frequency, periodicity, and implications. Geol Soc Spec Publ 202(25):81–90CrossRefGoogle Scholar
  28. Larsen G, Eiríksson J (2008) Holocene tephra archives and tephrochronology in Iceland—a brief overview. Jökull 58:229–250Google Scholar
  29. Larsen G, Guðmundsson MT, Björnsson H (1998) Eight centuries of periodic volcanism at the centre of the Iceland hotspot revealed by glacier tephrostratigraphy. Geology 26:943–946CrossRefGoogle Scholar
  30. McNutt SR, Nishimura T (2008) Volcanic tremor during eruptions: temporal characteristics, scaling constraints on conduit size and processes. JVGR 178:10–18Google Scholar
  31. Metrich N, Sigurdsson H, Meyer PS, Devine JD (1991) The 1783 Lakagigar eruption in Iceland: geochemistry, CO2 and sulfur degassing. Contrib Mineral Petrol 107:435–447CrossRefGoogle Scholar
  32. Oddsson, B (2007) The Grímsvötn eruption in 2004: dispersal and total mass of tephra and comparison with plume transport models. Inst. Earth Sci. Reykjavik, University of Iceland. MSc. Thesis: pp 130Google Scholar
  33. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15CrossRefGoogle Scholar
  34. Rose W, Self S, Murrow P, Bonadonna C, Durant A, Ernst G (2008) Nature and significance of small volume fall deposits at composite volcanoes: insights from the October 14, 1974 Fuego eruption, Guatemala. Bull Volcanol 70:1043–1067CrossRefGoogle Scholar
  35. Sable JE, Houghton BF, Del Carlo P, Coltelli M (2006) Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: Evidence from clast microtextures. Journal of Volcanology and Geothermal Research 158:333–354CrossRefGoogle Scholar
  36. Sæmundsson K (1982) Calderas in the active volcanic areas of Iceland. In: Thorarinsdóttir H, Óskarsson OH, Steinthorsson S, Einarsson T (eds) Fire. Sogufelag, Reykjavík, pp 221–239, In IcelandicGoogle Scholar
  37. Schumacher R, Schmincke HU (1995) Models for the origin of accretionary lapilli. Bull Volcanol 56:626–639Google Scholar
  38. Schuman U et al (2010) Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010. Atmos Chem Phys Discuss 46:22131–22218CrossRefGoogle Scholar
  39. Sigmundsson F, Guðmundsson MT (2004) The Grímsvötn eruption, November 2004. Jökull 54:139–142Google Scholar
  40. Skilling IP (1994) Evolution of an englacial volcano: Brown Bluff, Antarctica. Bull Volcanol 56:573–591CrossRefGoogle Scholar
  41. Smellie JL (2000) Subglacial eruptions. In: Sigurðsson H (ed) Encyclopaedia of volcanoes. Academic, San Diego, pp 403–418Google Scholar
  42. Smellie JL, Hole MJ (1997) Products and processes in Pliocene—recent, subaqueous to emergent volcanism in the Antarctic Peninsula: examples of englacial Surtseyan volcano construction. Bull Volcanol 58(8):626–646CrossRefGoogle Scholar
  43. Sohn Y, Chough SK (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36:837–855CrossRefGoogle Scholar
  44. Sohn YK, Chough SK (1992) The Ilchulbong tuff cone, Cheju Island, South Korea. Sedimentology 39(4):523–544CrossRefGoogle Scholar
  45. Thorarinsson S (1953) Some new aspects of the Grímsvötn problem. J Glaciol 2:267–274Google Scholar
  46. Thorarinsson S (1964) Surtsey: the new island in the Atlantic. Viking, New York, p 63Google Scholar
  47. Thorarinsson S (1974) Votnin Strið. Menningarsjodur, Reykjavík, p 254Google Scholar
  48. Thorðarson TH, Höskuldsson Á (2008) Postglacial volcanism in Iceland. Jökull 58:197–228Google Scholar
  49. Thordarson T, Larsen G (2007) Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history. J Geodyn 43:118–152CrossRefGoogle Scholar
  50. Thordarson TH, Self S (1993) The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783–1785. Bull Volcanol 55:233–263CrossRefGoogle Scholar
  51. Vogfjörð KS et al (2005) Forecasting and monitoring a subglacial eruption in Iceland. Eos 15(86):245–248CrossRefGoogle Scholar
  52. Walker GPL, Croasdale R (1972) Characteristics of some basaltic pyroclasts. Bull Volcanol 35:303–317CrossRefGoogle Scholar
  53. Waters AC, Fisher RV (1971) Base surges and their deposits: Capelinhos and Taal volcanoes. J Geophys Res 76:5596–5614CrossRefGoogle Scholar
  54. Wolfe CJ, Bjarnason IT, VanDecar JC, Solomon SC (1997) Seismic structure of the Iceland mantle plume. Nature 385:245–247CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • T. C. Jude-Eton
    • 1
  • T. Thordarson
    • 1
  • M. T. Gudmundsson
    • 2
  • B. Oddsson
    • 2
  1. 1.School of GeoSciencesUniversity of EdinburghEdinburghUK
  2. 2.Institute of Earth SciencesUniversity of IcelandReykjavíkIceland

Personalised recommendations