Bulletin of Volcanology

, Volume 74, Issue 5, pp 1005–1022 | Cite as

Science at the policy interface: volcano-monitoring technologies and volcanic hazard management

Research Article

Abstract

This paper discusses results from a survey of volcanologists carried out on the Volcano Listserv during late 2008 and early 2009. In particular, it examines the status of volcano monitoring technologies and their relative perceived value at persistently and potentially active volcanoes. It also examines the role of different types of knowledge in hazard assessment on active volcanoes, as reported by scientists engaged in this area, and interviewees with experience from the current eruption on Montserrat. Conclusions are drawn about the current state of monitoring and the likely future research directions, and also about the roles of expertise and experience in risk assessment on active volcanoes; while local knowledge is important, it must be balanced with fresh ideas and expertise in a combination of disciplines to produce an advisory context that is conducive to high-level scientific discussion.

Keywords

Science and policy Risk Uncertainty Volcano monitoring Volcanic hazards 

Notes

Acknowledgements

AD acknowledges a NERC-ESRC PhD studentship. The authors thank three anonymous reviewers for their helpful comments, which improved the quality of the manuscript. The people of Montserrat, the staff of the MVO and the members of the SAC are thanked for their support and insights.

References

  1. Aiuppa A, Bertagnini A, Métrich N, Moretti R, Di Muro A, Liuzzo M, Tamburello G (2010) A model of degassing for Stromboli volcano. Earth Planet Sci Lett 295(1–2):195–204CrossRefGoogle Scholar
  2. Aspinall WP (2006) Structured elicitation of expert judgement for probabilistic hazard and risk assessment in volcanic eruptions. In: Mader H, Coles S, Connor C, Connor L (eds) Statistics in volcanology, vol 1. Geological Society of London, Special Publications of IAVCEI, London, pp 15–30Google Scholar
  3. Aspinall WP (2010) A route to more tractable expert advice. Nature 463:294–295CrossRefGoogle Scholar
  4. Aspinall WP, Loughlin S, Michael F, Miller A, Norton G, Rowley K et al (2002) The Montserrat Volcano Observatory: its evolution, organization, role and activities. In: Druitt T, Kokelaar B (eds) The eruption of the Soufriere Hills Volcano, Montserrat, from 1995 to 1999. Geological Society of London Memoir 21, London, pp 71–91Google Scholar
  5. Aspinall WP, Woo G, Voight B, Baxter PJ (2003) Evidence-based volcanology: application to eruption crises. J Volcanol Geotherm Res 128:273–285CrossRefGoogle Scholar
  6. Bellucci F, Woo J, Kilburn C, Rolandi G (2005) Ground deformation at Campi Flegrei, Italy: Implications for hazard assessment. Geological Society, London, Special Publications 269: 141–157.Google Scholar
  7. Benoit JP, McNutt SR (1997) New constraints on source processes of volcanic tremor at Arenal Volcano, Costa Rica, using broadband seismic data. Geophys Res Lett 24(4):449–452CrossRefGoogle Scholar
  8. Bonafede M (1991) Hot fluid migration: an efficient source of ground deformation—application to the 1982–1984 crisis at Phlegrean Fields, Italy. J Volcanol Geotherm Res 48:187–198CrossRefGoogle Scholar
  9. Brown MB (2009) Science in democracy: expertise, institutions and representation. MIT Press, CambridgeGoogle Scholar
  10. Burton MR, Allard P, Mure F, Oppenheimer C (2003). FTIR remote sensing of fractional magma degassing at Mount Etna, Sicily. In: Oppenheimer C, Pyle DM, Barclay J, (eds.) Volcanic degassing. Special Publications. London, The Geological SocietyGoogle Scholar
  11. Burton MR, Allard P, Mure F, La Spina A (2007) Magmatic gas composition reveals the source depth of slug-driven strombolian explosive activity. Science 317(5835):227CrossRefGoogle Scholar
  12. Burton MR, Caltabiano T, Mure F, Salerno GG, Randazzo D (2009) SO2 flux from Stromboli during the 2007 eruption: Results from the FLAME network and traverse measurements. J Volcanol Geotherm Res 182:214–220CrossRefGoogle Scholar
  13. Cashman KV, Taggart JE (1983) Petrologic monitoring of 1981 and 1982 eruptive products from Mount St. Helens. Science 221:1385–1387CrossRefGoogle Scholar
  14. Chester DK (2005) Theology and disaster studies: The need for dialogue. J Volcanol Geotherm Res 146(4):319–328CrossRefGoogle Scholar
  15. Chouet BA (1996) New methods and future trends in seismological volcano monitoring. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, New YorkGoogle Scholar
  16. Chouet BA et al (2003) Source mechanisms of explosions at Stromboli volcano, Italy, determined from moment-tensor inversions of very-long-period data. J Geophys Res 108(B1):2019CrossRefGoogle Scholar
  17. Collins HM (1985) Changing order: Replication and induction in scientific practice. Sage Publications, LondonGoogle Scholar
  18. Collins HM (2004) Interactional expertise as a third kind of knowledge. Phenomenol Cogn Sci 3:125–143CrossRefGoogle Scholar
  19. Collins HM, Evans R (2002) The third wave of science studies: studies of expertise and experience. Soc Stud Sci 32(2):235–296CrossRefGoogle Scholar
  20. Collins HM, Evans R (2007) Rethinking expertise. University of Chicago Press, ChicagoGoogle Scholar
  21. Corsaro RA, Miraglia L (2005) Dynamics of 2004–2005 Mt. Etna effusive eruption as inferred from petrologic monitoring. Geophys Res Lett 32:L13302. doi:10.1029/2005GL022347 CrossRefGoogle Scholar
  22. Cronin SJ, Gaylord DR, Charley D, Alloway BV, Wallez S, Esau JW (2004) Participatory methods of incorporating scientific with traditional knowledge for volcanic hazard management on Ambae Island, Vanuatu. Bull Volcanol 66(7):652–668CrossRefGoogle Scholar
  23. De Angelis S, Bass V, Hards V, Ryan G (2007) Seismic characterisation of pyroclastic flow activity at Soufriere Hills Volcano, Montserrat, 8 January 2007. Nat Hazards Earth Syst Sci 7(4):467–472CrossRefGoogle Scholar
  24. Donovan K (2009) Doing social volcanology: exploring volcanic culture in Indonesia. Area 42(1):117CrossRefGoogle Scholar
  25. Druitt TH, Kokelaar BP (eds) (2002) The eruption of the Soufriere Hills Volcano, Montserrat, from 1995 to 1999. London, Geological Society of LondonGoogle Scholar
  26. Edmonds M, Pyle D, Oppenheimer C (2001) A model for degassing at the Soufrière Hills Volcano, Montserrat, West Indies, based on geochemical data. Earth Planet Sci Lett 186(2):159CrossRefGoogle Scholar
  27. Edmonds M, Herd RA, Galle B, Oppenheimer C (2003) Automated, high time-resolution measurements of SO2 flux at Soufriere Hills Volcano, Montserrat. Bull Volcanol 65(8):578–586CrossRefGoogle Scholar
  28. Edmonds M, Aiuppa A, Humphreys M, Moretti R, Giudice G, Martin RS, Herd RA, Christopher T (2010) Excess volatiles supplied by mingling of mafic magma at an andesite arc volcano. Geochem Geophys Geosyst 11:Q04005. doi:10.1029/2009GC002781 CrossRefGoogle Scholar
  29. Ewert JW, Newhall CG (2004) Status and challenges of volcano monitoring worldwide. In Proceedings of the 2nd International Conferenc-ze on Volcanic Ash and Aviation Safety, June 21–24, 2004, Alexandria, Virginia: Office of the Federal Coordinator for Meteorological Services and Supporting Research, session 2, p. 9–14Google Scholar
  30. Ewert J, Guffanti M, Murray TL (2005) An assessment of volcanic threat and monitoring capabilities in the United States: NVEWS framework for a national volcano early warning system. USGS OPEN-FILE REPORT 2005–1164Google Scholar
  31. Fialko Y, Khazan Y, Simons M (2003) Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophys J Int 146(1):181–190CrossRefGoogle Scholar
  32. Field A (2000) Discovering statistics using SPSS. Sage, LondonGoogle Scholar
  33. Fischer F (2010) Democracy and expertise: reorienting policy inquiry. Oxford University Press, OxfordGoogle Scholar
  34. Foroozan R, Elsworth D, Voight B, Mattioli G (2010) Dual reservoir structure at Soufriere Hills Volcano inferred from continuous GPS observations and heterogeneous elastic modelling. Geophys Res Lett 37:L00E12CrossRefGoogle Scholar
  35. Galle B, Johansson M, Rivera C, Zhang Y, Kihlman M, Kern C, Lehmann T, Platt U, Arellano S, Hidalgo S (2010) Network for Observation of Volcanic and Atmospheric Change (NOVAC)—a global network for volcanic gas monitoring: network layout and instrument description. J Geophys Res 115:D05304. doi:10.1029/2009JD011823 CrossRefGoogle Scholar
  36. Geertz C (1973) The interpretation of cultures. Basic Books, New YorkGoogle Scholar
  37. Gibbons M, Limoges C, Nowotny H, Schwartzman S, Scott P, Trow M (1994) The new production of knowledge: the dynamics of science and research in contemporary societies. Sage, LondonGoogle Scholar
  38. Giddens A (2010) The politics of climate change. Polity Press, CambridgeGoogle Scholar
  39. Hanks TC, Abrahamson NA, Boore DM, Coppersmith KJ, Knepprath NE (2009) Implementation of the SSHAC guidelines for level 3 and 4 PSHAs—experience gained from actual applications. USGS Open File Report 2009–1093Google Scholar
  40. House of Commons Science and Technology Committee (2004) The use of science in UK International Development Policy. Thirteenth Report of Session 2003–2004. Volume II. House of Commons, LondonGoogle Scholar
  41. Hulme M (2009) Why we disagree about climate change: understanding controversy, inaction and opportunity. Cambridge University Press, CambridgeGoogle Scholar
  42. Hulme M, Mahony M (2010) Climate change: what do we know about the IPCC? Prog Phys Geogr 34(5):705–718CrossRefGoogle Scholar
  43. Jackson DB, Kauahikaua J, Zablocki CJ (1985) Resistivity monitoring of an active volcano using the controlled-source electromagnetic technique: Kilauea, Hawaii. J Geophys Res 90(B14):12,545–12,555. doi:10.1029/JB090iB14p12545 CrossRefGoogle Scholar
  44. Jasanoff S (1990) The Fifth Branch: science advisors as policymakers. Harvard University Press, CambridgeGoogle Scholar
  45. Jasanoff S (2003a) Breaking the waves in science studies: comment on H.M. Collins and Robert Evans, The Third Wave of Science Studies. Soc Stud Sci 33(3):389–400CrossRefGoogle Scholar
  46. Jasanoff S (2003b) (No?) Accounting for expertise. Sci Public Policy 30(3):157–162CrossRefGoogle Scholar
  47. Jasanoff S (2004) The co-production of science and the social order. Routledge, AbingdonCrossRefGoogle Scholar
  48. Jasanoff S (2005) Designs on nature: science and democracy in Europe and the United States. Princeton University Press, PrincetonGoogle Scholar
  49. Jordan TH, Chen Y-T, Gasparini P, Madariaga R, Main I, Marzocchi W, Papadopoulos G, Sobolev G, Yamaoka K, Zschau J (2011) Operational earthquake forecasting: state of knowledge and guidelines for implementation. findings and recommendations of the International Commission on Earthquake Forecasting for Civil Protection, Rome, Italy: Dipartimento della Protezione Civile, Ann. Geophys 54(4):315–391Google Scholar
  50. Jousset P, Mori H, Okada H (2003) Elastic models for the magma intrusion associated with the 2000 eruption of Usu Volcano, Hokkaido, Japan. J Volcanol Geotherm Res 125(1–2):81–106CrossRefGoogle Scholar
  51. Kern C, Deutschmann T, Vogel L, Wöhrbach M, Wagner T, Platt U (2010) Radiative transfer corrections for accurate spectroscopic measurements of volcanic gas emissions. Bulletin of Volcanology 72(2):233–247Google Scholar
  52. Kumagai H, Chouet BA (1999) The complex frequencies of long-period seismic events as probes of fluid composition beneath volcanoes. Geophys J Int 138:F7–F12. doi:10.1046/j.1365-246X.1999.00911.x CrossRefGoogle Scholar
  53. Lahr J, Chouet B, Stephens C, Power J, Page R (1994) Earthquake classification, location, and error analysis in a volcanic environment: implications for the magmatic system of the 1989–1990 eruptions at Redoubt Volcano, Alaska. J Volcanol Geotherm Res 62:137–151CrossRefGoogle Scholar
  54. Latour B (1987) Science in action: how to follow scientists and engineers through society. Harvard University Press, CambridgeGoogle Scholar
  55. Lindsay J, Marzocchi W, Jolly G, Constantinescu R, Selva J, Sandri L (2010) Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand national disaster exercise ‘Ruaumoko’. Bull Volcanol 72:185–204CrossRefGoogle Scholar
  56. Marzocchi W, Woo G (2007) Probabilistic eruption forecasting and the call for an evacuation. Geophys Res Lett 34:L22310CrossRefGoogle Scholar
  57. Marzocchi W, Woo G (2009) Principles of volcanic risk metrics: theory and the case study of Mount Vesuvius and Campi Flegrei, Italy. J Geophys Res. doi:10.1029/2008JB005908
  58. Marzocchi W, Zechar JD (2011) Earthquake forecasting and earthquake prediction: different approaches for obtaining the best model. Seismol Res Lett 82(3):442–448CrossRefGoogle Scholar
  59. Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res. doi:10.1029/2004JB003155
  60. Marzocchi W, Sandri L, Selva J (2008) BET_EF: a probabilistic tool for long- and short-term eruption forecasting. Bull Volcanol 70(5):623–632CrossRefGoogle Scholar
  61. McGonigle AJS, Oppenheimer C (2003) Optical sensing of volcanic gas and aerosol emissions. In: Oppenheimer C, Pyle DM, Barclay J (eds) Volcanic degassing. The Geological Society, LondonGoogle Scholar
  62. McNutt SR (1996) Seismic monitoring and eruption forecasting of volcanoes: a review of the state-of-the-art and case histories. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer, BerlinGoogle Scholar
  63. Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull Earthq Res Inst, Univ Tokyo 36:99–134Google Scholar
  64. Morgan MG, Dowlatadasi H, Henrion M, Keith D, Lempert R, McBride S, Small M, Wilbanks T (2009) Best practice approaches for characterising, communicating and incorporating scientific uncertainty in decisionmaking. US Climate Change Science Program, WashingtonGoogle Scholar
  65. Mori T, Burton MR (2006) The SO2 camera: a simple, fast and cheap method for ground-based imaging of SO2 in volcanic plumes. Geophys Res Lett 33:L24804. doi:10.1029/2006GL027916 CrossRefGoogle Scholar
  66. Neuberg JW, Baptie B, Luckett R, Stewart R (1998) Results from the broadband seismic network on Montserrat. Geophys Res Lett 25(19):3661–3664CrossRefGoogle Scholar
  67. Neuberg JW, Tuffen H, Collier L, Green D, Powell T, Dingwell D (2006) The trigger mechanism of low-frequency earthquakes on Montserrat. J Volcanol Geotherm Res 153(1–2):37–50CrossRefGoogle Scholar
  68. Newhall C, Hoblitt RP (2002) Constructing event trees for volcanic crises. Bull Volcanol 64:3–20CrossRefGoogle Scholar
  69. Newhall C, Punongbayan R (1996) The narrow margin of successful volcanic-risk mitigation. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, New York, pp 807–832CrossRefGoogle Scholar
  70. Oppenheimer C, Edmonds M, Francis P, Burton M (2002) Variation in HCl/SO2 gas ratios observed by Fourier transform spectroscopy at Soufriere Hills Volcano, Montserrat. In: Druitt T, Kokelaar B (eds) The eruption of the Soufriere Hills Volcano, Montserrat, 1995–1999. Geological Society, London, Memoir 21Google Scholar
  71. Oppenheimer C, Pyle DM, Barclay J (eds) (2003) Volcanic degassing. London, The Geological SocietyGoogle Scholar
  72. Rayner S (2003) Democracy in the age of assessment: reflections on the roles of expertise and democracy in public-sector decision making. Sci Public Policy 30(3):163–170CrossRefGoogle Scholar
  73. Ripepe M, De Angelis S, Lacanna G, Voight B (2010) Observation of infrasonic and gravity waves at Soufriere Hills Volcano, Montserrat. Geophys Res Lett 37:L00E14CrossRefGoogle Scholar
  74. Roman DC, Neuberg JW, Luckett RR (2006) Assessing the likelihood of volcanic eruption through analysis of volcano-tectonic earthquake fault-plane solutions. Earth Planet Sci Lett 248(1–2):244–252CrossRefGoogle Scholar
  75. Rowe CA, Aster RC, Kyle PR, Schlue JW, Dibble RR (1998) Broadband recording of Strombolian explosions and associated very-long-period seismic signals on Mount Erebus Volcano, Ross Island, Antarctica. Geophys. Res. Lett. 25(13):2297–2300Google Scholar
  76. Rymer H (1994) Microgravity change as a precursor to volcanic activity. J Volcanol Geotherm Res 61(3–4):311CrossRefGoogle Scholar
  77. Salerno GG et al (2009a) Three-years of SO2 flux measurements of Mt. Etna using an automated UV scanner array: comparison with conventional traverses and uncertainties in flux retrieval. J Volcanol Geotherm Res 183(1–2):76–83CrossRefGoogle Scholar
  78. Salerno GG, Burton MR, Oppenheimer C, Caltabiano T, Tsanev V, Bruno N (2009b) Novel retrieval of volcanic SO2 abundance from ultraviolet spectra. J Volcanol Geotherm Res 181(1–2):141–153CrossRefGoogle Scholar
  79. Sandri L, Marzocchi W, Zaccarelli L (2004) A new perspective in identifying the precursory patterns of eruptions. Bull Volcanol 66(3):263–275CrossRefGoogle Scholar
  80. Shackley S, Wynne B (1995) Global climate change: the mutual construction of an emergent science-policy domain. Sci Public Policy 22(4):218–230Google Scholar
  81. Shackley S, Wynne B (1996) Representing uncertainty in global climate change science and policy: boundary-ordering devices and authority. Sci Technol Hum Values 21(3):275–302CrossRefGoogle Scholar
  82. Sigmundsson F, Hreinsdóttir S, Hooper A, Árnadóttir T, Pedersen R, Roberts MJ, Óskarsson N, Auriac A, Decriem J, Einarsson P, Geirsson H, Hensch M, Ófeigsson BG, Sturkell E, Sveinbjörnsson H, Feigl KL (2010) Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature 468:426–430CrossRefGoogle Scholar
  83. Somekh B, Lewin C (eds) (2005) Research methods in the social sciences. Sage, LondonGoogle Scholar
  84. Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210:1–15CrossRefGoogle Scholar
  85. Sparks RSJ, Young SR (2002) The eruption of Soufriere Hills Volcano, Montserrat (1995–1999): overview of scientific results. Geol Soc Lond Mem 21(1):45–69CrossRefGoogle Scholar
  86. Spiegelhalter DJ, Riesch H (2011) Don't know, can't know: embracing deeper uncertainties when analysing risks. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369(1956):4730–4750. doi:10.1098/rsta.2011.0163
  87. Stevens JP (1992) Applied multivariate statistics for the social sciences. Hillsdale, NJ: Erlbaum.Google Scholar
  88. Stirling A (2007) Risk, precaution and science: towards a more constructive policy debate. EMBO Rep 8(4):309–315CrossRefGoogle Scholar
  89. Stirling A (2008) Opening up and closing down. Sci Technol Hum Values 33(2):262–294CrossRefGoogle Scholar
  90. Tilling RI (2008) The critical role of volcano monitoring in risk reduction. Adv Geosci 14:3–11CrossRefGoogle Scholar
  91. Traweek S (1988) Beamtimes and lifetimes: the world of high-energy physicists. Harvard University Press, HarvardGoogle Scholar
  92. Voight B, Hoblitt RP, Clarke AB, Lockhart AC, Miller AD, Lynch L, McMahon J (1998) Remarkable cyclic ground deformation monitored in real-time on Montserrat, and its use in eruption forecasting. Geophys Res Lett 25(18):3405–3408CrossRefGoogle Scholar
  93. Voight B, Sparks RSJ, Miller AD, Stewart RC, Hoblitt RP, Clarke AB, Ewart J, Aspinall WP, Baptie B, Calder ES, Cole PD, Druitt TH, Hartford CL, Herd RA, Jackson P, Lejeune AM, Lockhart AB, Loughlin SC, Luckett R, Lynch L, Norton GE, Robertson R, Watson IM, Watts R, Young SR (1999) Magma flow instability and cyclic activity at Soufriere Hills Volcano, Montserrat, British West Indies. Science 283:1138–1142CrossRefGoogle Scholar
  94. Voight B, Hidayat D, Sacks S, Linde A, Chardot L, Clarke A, Elsworth D, Foroozan R, Malin P, Mattioli G, McWhorter N, Shalev E, Sparks RSJ, Widiwijayanti C, Young SR (2010) Unique strainmeter observations of vulcanian explosions, Soufrière Hills Volcano, Montserrat, July 2003. Geophys Res Lett 37:L00E18CrossRefGoogle Scholar
  95. Wadge G, Mattioli G, Herd R (2006) Ground deformation at Soufriere Hills Volcano, Montserrat, during 1998–2000 measured by radar interferometry and GPS. J Volcanol Geotherm Res 152(1–2):157–173CrossRefGoogle Scholar
  96. Wadge G, Herd R, Ryan G, Calder ES, Komorowski JC (2010) Lava production at the Soufriere Hills Volcano, Montserrat, 1995–2009. Geophys Res Lett 37:L00E03CrossRefGoogle Scholar
  97. Watts RB, Herd RA, Sparks RSJ, Young SR (2002) Growth patterns and emplacement of the andesitic lava dome at Soufriere Hills Volcano, Montserrat. In: Druitt T, Kokelaar B (eds) The eruption of the Soufriere Hills Volcano, Montserrat, 1995–1999. Geological Society, London, Memoir 21Google Scholar
  98. Wynne B (1992) Uncertainty and environmental learning: reconceiving science and policy in the preventive paradigm. Glob Environ Chang 2(2):111–127CrossRefGoogle Scholar
  99. Wynne B (2003) Seasick on the third wave? Subverting the hegemony of propositionalism. Soc Stud Sci 33(3):401–417CrossRefGoogle Scholar
  100. Wynne B, Felt U, Callon M, Gonçalves M, Jasanoff S, Jepsen M, Joly P-B, Konopasek Z, May S, Neubauer C, Rip A, Siune K, Stirling A, Tallacchini M (2007) Taking European knowledge society seriously. Expert Group on Science and Governance. European Commission D-G Research, Science Economy and Society Directorate, BrusselsGoogle Scholar
  101. Young SR, Sparks R, Aspinall W, Lynch LL, Miller A, Robertson REA, Shepherd JB (1998) Overview of the eruption of Soufriere Hills Volcano, Montserrat, 18 July 1995 to December 1997. Geophys. Res. Lett. 25(18):3389–3392Google Scholar
  102. Zlotnicki J, Le Mouël JL, Kanwar R, Yvetot P, Vargemezis G, Menny P, Fauquet F (2006) Ground-based electromagnetic studies combined with remote sensing based on DEMETER mission: a way to monitor active faults and volcanoes. Planet Space Sci 54:541–557CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Amy Donovan
    • 1
    • 2
  • Clive Oppenheimer
    • 3
    • 4
    • 1
  • Michael Bravo
    • 2
  1. 1.Department of GeographyUniversity of CambridgeCambridgeUK
  2. 2.Scott Polar Research InstituteUniversity of CambridgeCambridgeUK
  3. 3.Le Studium, Institute for Advanced StudiesOrléans and ToursFrance
  4. 4.Institut des Sciences de la Terre d’OrléansUniversity of OrléansOrléans, Cedex 2France

Personalised recommendations