Bulletin of Volcanology

, Volume 74, Issue 5, pp 981–1004 | Cite as

Magma storage conditions beneath Dabbahu Volcano (Ethiopia) constrained by petrology, seismicity and satellite geodesy

  • L. FieldEmail author
  • J. Blundy
  • R. A. Brooker
  • T. Wright
  • G. Yirgu
Research Article


A variety of methods exist to constrain sub-volcanic storage conditions of magmas. Petrological, seismological and satellite geodetic methods are integrated to determine storage conditions of peralkaline magmas beneath Dabbahu Volcano, Afar, Ethiopia. Secondary ion mass spectrometry (SIMS) analysis of volatile contents in melt inclusions trapped within phenocrysts of alkali feldspar, clinopyroxene and olivine from pantellerite obsidians representing the youngest eruptive phase (<8 ka) show H2O contents ≤5.8 wt.% and CO2 contents generally below 500 ppm, although rarely as high as 1,500 ppm. Volatile saturation pressures (at 679–835°C) are in the range 43–207 MPa, consistent with published experimental data for similar pantellerites, which show that the phenocryst assemblage of alkali feldspar + cpx + aenigmatite ± ilmenite is stable at 100 to 150 MPa. Inferred magma storage depths for these historic eruptions are ~1–5 km below sea-level, consistent with the depths of earthquakes, associated with magma chamber deflation following a dyke intrusion in the period Oct 2005–Apr 2006. Interferometric synthetic aperture radar (InSAR) data for the same period reveal a broad ~20 km diameter area of uplift. Modelling of different geometries reveals that a series of stacked sills over a 1–5 km depth range best matches the InSAR data. The consistency of depth estimates based on petrological study of ancient eruptions and the seismicity, inflation and deflation of Dabbahu observed in relation to the dyking event of 2005, suggest a small but vertically extensive and potentially long-lived magma storage region.


Melt inclusions Afar Magma storage Dabbahu Volatiles InSAR Peralkaline 



This work has been supported by the Natural Environment Research Council, Afar Rift Consortium grant NE/F007604/1. The authors acknowledge the generous support of the University of Addis Ababa with fieldwork arrangements, particularly E. Lewi and A. Ayele, and the Afar Regional Government for invaluable assistance. Detailed Dabbahu earthquake data were kindly provided by C. Ebinger. The authors gratefully acknowledge technical assistance provided by S. Kearns (EMPA), R. Hinton and J. Craven (SIMS), N. Marsh and R. Kelly (XRF) and thorough reviews by J. Lowenstern and R. MacDonald.

Supplementary material

445_2012_580_MOESM1_ESM.xlsx (37 kb)
ESM 1 (XLSX 37 kb)
445_2012_580_MOESM2_ESM.pdf (98 kb)
ESM 2 (PDF 97 kb)


  1. Anderson AT, Brown GG (1993) CO2 contents and formation pressures of some Kilauean melt inclusions. Am Min 78(7–8):794–803Google Scholar
  2. Ayele A, Jacques E, Kassim M, Kidane T, Omar A, Tait S, Nercessian A, de Chabalier J, King G (2007) The volcano-seismic crisis in Afar, Ethiopia starting September 2005. Earth Planet Sci Lett 255(1–2):177–187CrossRefGoogle Scholar
  3. Ayele A, Keir D, Ebinger C, Wright TJ, Stuart GW, Buck WR, Jacques E, Ogubazghi G, Sholan J (2009) September 2005 mega-dike emplacement in the Manda-Harraro nascent oceanic rift (Afar depression). Geophys Res Lett 36Google Scholar
  4. Bailey DK, Macdonald R (1969) Alkali-feldspar fractionation trends and derivation of peralkaline liquids. Am J Sci 267(2):242–248CrossRefGoogle Scholar
  5. Bailey DK, Cooper JP, Knight JL (1974) Anhydrous melting and crystallization of peralkaline obsidians. Bull Volcanol 38(2):653–665CrossRefGoogle Scholar
  6. Barberi F, Varet J (1977) Volcanism of Afar—small-scale plate tectonic implications. Geol Soc Am Bull 88(9):1251–1266CrossRefGoogle Scholar
  7. Barberi F, Ferrara R, Santacroce R, Treuil M, Varet J (1974a) A transitional basalt—pantellerite sequence of fractional crystallisation, the Boina centre, (Afar Rift, Ethiopia). J Petrol 16(1):22–56Google Scholar
  8. Barberi F, Santacroce R, Varet J (1974b) Silicic peralkaline volcanic rocks of the Afar Depression (Ethiopia). Bull Volcanol 38(2):755–790CrossRefGoogle Scholar
  9. Barclay J, Carroll MR, Houghton BF, Wilson CJN (1996) Pre-eruptive volatile content and degassing history of an evolving peralkaline volcano. J Volcanol Geotherm Res 74(1–2):75–87CrossRefGoogle Scholar
  10. Bizouard H, Barberi F, Varet J (1980) Mineralogy and petrology of Erta Ale and Boina volcanic series, Afar Rift, Ethiopia. J Petrol 21(2):401–436Google Scholar
  11. Blundy J, Cashman K (2005) Rapid decompression-driven crystallization recorded by melt inclusions from Mount St. Helens volcano. Geology 33(10):793–796CrossRefGoogle Scholar
  12. Blundy J, Cashman K (2008) Petrologic reconstruction of magmatic system variables and processes. In: FJ PKT (ed) Minerals, inclusions and volcanic processes. Min Soc Am, 3635 Concorde Pkwy STE 500, Chantilly, VA 20151-1125 USA pp 179–239Google Scholar
  13. Bürgmann R, Rosen PA, Fielding EJ (2000) Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annu Rev Earth Planet Sci 28(1):169–209CrossRefGoogle Scholar
  14. Cornwell DG, Mackenzie GD, England RW, Maguire PKH, Asfaw LM, Oluma B (2006) Northern main Ethiopian rift crustal structure from new high-precision gravity data. Geol Soc Lond Spec Pub 259(1):307–321CrossRefGoogle Scholar
  15. Danyushevsky LV, Della Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas; petrological implications. Contribu Min Petrol 138(1):68–83CrossRefGoogle Scholar
  16. Di Carlo I, Rotolo SG, Scaillet B, Buccheri V, Pichavant M (2010) Phase equilibrium constraints on pre-eruptive conditions of recent felsic explosive volcanism at Pantelleria Island, Italy. J Petrol 51:2245–2276CrossRefGoogle Scholar
  17. Dixon JE (1997) Degassing of alkalic basalts. Am Min 82(3–4):368–378Google Scholar
  18. Ebinger C, Keir D, Ayele A, Calais E, Wright TJ, Belachew M, Hammond JOS, Campbell E, Buck WR (2008) Capturing magma intrusion and faulting processes during continental rupture: seismicity of the Dabbahu (Afar) rift. Geophys J Int 174:1138–1152CrossRefGoogle Scholar
  19. Einarsson P (1978) S-wave shadows in the Krafla Caldera in NE-Iceland, evidence for a magma chamber in the crust. Bull Volcanol 41(3):187–195CrossRefGoogle Scholar
  20. Feuillet N, Nostro C, Chiarabba C, Cocco M (2004) Coupling between earthquake swarms and volcanic unrest at the Alban Hills Volcano (central Italy) modeled through elastic stress transfer. J Geophys Res-Solid Earth 109(B2)Google Scholar
  21. Gioncada A, Landi P (2010) The pre-eruptive volatile contents of recent basaltic and pantelleritic magmas at Pantelleria (Italy). Bull Volcanol 189:191–201Google Scholar
  22. Grandin R, Socquet A, Doin MP, Jacques E, de Chabalier JB, King GCP (2010) Transient rift opening in response to multiple dike injections in the Manda Hararo rift (Afar, Ethiopia) imaged by time-dependent elastic inversion of interferometric synthetic aperture radar data. J Geophys Res 115 B:B09403CrossRefGoogle Scholar
  23. Hamling IJ, Ayele A, Bennati L, Calais E, Ebinger CJ, Keir D, Lewi E, Wright TJ, Yirgu G, (2009) Geodetic observations of the ongoing Dabbahu rifting episode: new dyke intrusions in 2006 and 2007. Geophys J Int 178:989–1003Google Scholar
  24. Hamling IJ, Wright TJ, Calais E, Bennati L, Lewi E (2010) Stress transfer between thirteen successive dyke intrusions in Ethiopia. Nature Geosci 3:713–717Google Scholar
  25. Hill GJ, Caldwell TG, Heise W, Chertkoff DG, Bibby HM, Burgess MK, Cull JP, Cas RAF (2009) Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data. Nat Geosci 2(11):785–789CrossRefGoogle Scholar
  26. Horn S, Schmincke HU (2000) Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD. Bull Volcanol 61(8):537–555Google Scholar
  27. Humphreys MCS, Kearns SL, Blundy JD (2006) SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: implications for melt inclusion analysis. Am Min 91(4):667–679CrossRefGoogle Scholar
  28. Lahitte P, Gillot P, Courtillot V (2003) Silicic central volcanoes as precursors to rift propagation; the Afar case. Earth Planet Sci Lett 207(1–4):103–116CrossRefGoogle Scholar
  29. Lees JM (2007) Seismic tomography of magmatic systems. J Volcanol Geotherm Res 167(1–4):37–56CrossRefGoogle Scholar
  30. Lowernstern JB, Mahood GA (1991) New data on magmatic H2O contents of pantellerites with implications for petrogenesis and eruptive dynamics at Pantelleria. Bull Volcanol 54:78–83CrossRefGoogle Scholar
  31. Macdonald R (1974) Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks. Bull Volcanol 38(2):498–516CrossRefGoogle Scholar
  32. Macdonald R et al (1995) Petrogenesis of Silali volcano, Gregory Rift, Kenya. J Geol Soc 152:703–720CrossRefGoogle Scholar
  33. Macdonald R et al (2011) Mineral stability in peralkaline silicic rocks: Information from trachytes of the Menengai volcano, Kenya. Lithos 125:553–568CrossRefGoogle Scholar
  34. Mahatsente R, Jentzsch G, Jahr T (1999) Crustal structure of the Main Ethiopian Rift from gravity data: 3-dimensional modeling. Tectonophysics 313(4):363–382CrossRefGoogle Scholar
  35. Marshall AS et al (1998) Phenocrystic fluorites in peralkaline rhyolites, Olkaria, Kenya Rift Valley. Min Mag 62:477–486CrossRefGoogle Scholar
  36. Metrich N, Rutherford MJ (1992) Experimental study of chlorine behaviour in hydrous silicic melts. Geochim Et Cosmochim Acta 56(2):607–616CrossRefGoogle Scholar
  37. Metrich N, Wallace PJ (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. In: Putirka K, Tepley FJ (eds) Annual Fall American-Geophysical-Union Meeting. Min Soc Amer, San Franscisco, pp 363–402Google Scholar
  38. Mickus K, Tadesse K, Keller GR, Oluma B (2007) Gravity analysis of the main Ethiopian rift. J Afr Earth Sci 48(2–3):59–69Google Scholar
  39. Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bulletin of the Earthquake Research Institute 36:99–134Google Scholar
  40. Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for excel. Comput Geosci 28(5):597–604CrossRefGoogle Scholar
  41. Newman S, Stolper EM, Epstein S (1986) Measurement of water in rhyolitic glasses: calibration of an infrared spectroscopic technique. Am Min 71:1527–1541Google Scholar
  42. Nicholls J, Carmichael ISE (1969) Peralkaline acid liquids: a petrological study. Contrib Min Petrol 20(3):268–294CrossRefGoogle Scholar
  43. Nielsen RL, Michael PJ, Sours-Page R (1998) Chemical and physical indicators of compromised melt inclusions. Geochim Et Cosmochim Acta 62(5):831–839CrossRefGoogle Scholar
  44. Nooner SL, Bennati L, Calais E, Buck WR, Hamling IJ, Wright TJ, Lewi E (2009) Post-rifting relaxation in the Afar region, Ethiopia. Geophys Res Lett 36:L21308Google Scholar
  45. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75:1135–1154Google Scholar
  46. Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229(1–3):78–95CrossRefGoogle Scholar
  47. Pritchard ME, Simons M (2002) A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature 418(6894):167–171CrossRefGoogle Scholar
  48. Pritchard ME, Simons M (2004) An InSAR-based survey of volcanic deformation in the central Andes. Geochem Geophys Geosyst 5:Q02002Google Scholar
  49. Putirka KD (2008) Thermometers and barometers for volcanic systems. Minerals, inclusions and volcanic processes. Rev Min Geochem 69:61–120CrossRefGoogle Scholar
  50. Rowland J, Baker E, Ebinger C, Keir D, Kidane T, Biggs J, Hayward N, Wright TJ (2007) Fault growth at a nascent slow-spreading ridge: 2005 Dabbahu rifting episode, Afar. Geophys J Int 171(3):1226–1246CrossRefGoogle Scholar
  51. Sasai Y (1991) Piezomagnetic field associated with the Mogi model revisited—analytic solution for finite spherical source. J Geomagn Geoelectr 43(1):21–64CrossRefGoogle Scholar
  52. Scaillet B, Macdonald R (2001) Phase relations of peralkaline silicic magmas and petrogenetic implications. J Petrol 42(4):825–845CrossRefGoogle Scholar
  53. Scaillet B, Macdonald R (2003) Experimental constraints on the relationships between peralkaline rhyolites of the Kenya rift valley. J Petrology 44(10):1867–1894Google Scholar
  54. Scaillet B, Macdonald R (2006) Experimental constraints on pre-eruption conditions of pantelleritic magmas: evidence from the Eburru complex, Kenya Rift. Lithos 91(1–4):95–108CrossRefGoogle Scholar
  55. Schumacher JC (1991) Empirical ferric iron correction-necessity, assumptions, and effects on selected geothermobarometers. Mineral Mag 55:3–18Google Scholar
  56. Shalev E, Kenedi CL, Malin P, Voight V, Miller V, Hidayat D, Sparks RSJ, Minshull T, Paulatto M, Brown L, Mattioli G (2010) Three-dimensional seismic velocity tomography of Montserrat from the SEA-CALIPSO offshore/onshore experiment. Geophys Res Lett 37Google Scholar
  57. Tamic N, Behrens H, Holtz F (2001) The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2-H2O fluid phase. Chem Geol 174(1–3):333–347CrossRefGoogle Scholar
  58. Thompson RN, Mackenzie WS (1967) Feldspar-liquid equilibria in peralkaline acid liquids—an experimental study. Am J Sci 265(8):714–734CrossRefGoogle Scholar
  59. Webster J, Taylor RP, Bean C (1993) Pre-eruptive melt composition and constraints on degassing of a water-rich pantellerite magma, Fantale volcano. Ethiopia Contrib Min Petrol 114:1Google Scholar
  60. Whaler KA, Hautot S (2006) The electrical resistivity structure of the crust beneath the northern Main Ethiopian Rift. In: Yirgu G, Ebinger CJ, Maguire PKH (eds) Afar volcanic province within the East African rift system pp 293–305Google Scholar
  61. White JC, Holt GS, Parker DF, Ren MH (2003) Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part I: systematics of trace-element partitioning. Am Min 88(2–3):316–329Google Scholar
  62. White JC, Ren M, Parker DF (2005) Variation in mineralogy, temperature and oxygen fugacity in a suite of strongly peralkaline lavas and tuffs, Pantelleria, Italy. Can Min 43:1331–1347CrossRefGoogle Scholar
  63. Wilding MC, MacDonald R, Davies JE, Fallick AE (1993) Volatile characteristics of peralkaline rhyolites from Kenya: an ion microprobe, infrared spectroscopic and hydrogen isotope study. Contrib Min Petrol 114(2):264–275CrossRefGoogle Scholar
  64. Williams-Jones G, Rymer H, Mauri G, Gottsmann J, Poland M, Carbone D (2008) Toward continuous 4D microgravity monitoring of volcanoes. Geophysics 73(6):WA19–WA28Google Scholar
  65. Wolfenden E, Ebinger C, Yirgu G, Renne PR, Kelley SP (2005) Evolution of a volcanic rifted margin: Southern Red Sea, Ethiopia. Geol Soc Am Bull 117(7–8):846–864CrossRefGoogle Scholar
  66. Wright TJ (2002) Remote monitoring of the earthquake cycle using satellite radar interferometry. Phil Trans R Soc Lond Series A: Math, Phys Eng Sci 360(1801):2873–2888CrossRefGoogle Scholar
  67. Wright TJ, Ebinger CJ, Biggs J, Ayele A, Yirgu G, Keir D, Stork A (2006) Magma maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature 442:291–294CrossRefGoogle Scholar
  68. Yang X-M, Davis PM, Dieterich JH (1988) Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing. J Geophys Res 93:4249–4257Google Scholar
  69. Zellmer G, Annen C (2008) An introduction to magma dynamics (in Dynamics of crystal magma transfer, storage and differentiation). Geol Soc Spec Publ 304:1–13Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • L. Field
    • 1
    Email author
  • J. Blundy
    • 1
  • R. A. Brooker
    • 1
  • T. Wright
    • 2
  • G. Yirgu
    • 3
  1. 1.School of Earth SciencesUniversity of BristolBristolUK
  2. 2.School of Earth and EnvironmentUniversity of LeedsLeedsUK
  3. 3.Department of Earth SciencesUniversity of Addis AbabaAddis AbabaEthiopia

Personalised recommendations