Advertisement

Bulletin of Volcanology

, Volume 74, Issue 5, pp 963–980 | Cite as

Dykes and structures of the NE rift of Tenerife, Canary Islands: a record of stabilisation and destabilisation of ocean island rift zones

  • A. DelcampEmail author
  • V. R. Troll
  • B. van Wyk de Vries
  • J. C. Carracedo
  • M. S. Petronis
  • F. J. Pérez-Torrado
  • F. M. Deegan
Research Article

Abstract

Many oceanic island rift zones are associated with lateral sector collapses, and several models have been proposed to explain this link. The North–East Rift Zone (NERZ) of Tenerife Island, Spain offers an opportunity to explore this relationship, as three successive collapses are located on both sides of the rift. We have carried out a systematic and detailed mapping campaign on the rift zone, including analysis of about 400 dykes. We recorded dyke morphology, thickness, composition, internal textural features and orientation to provide a catalogue of the characteristics of rift zone dykes. Dykes were intruded along the rift, but also radiate from several nodes along the rift and form en échelon sets along the walls of collapse scars. A striking characteristic of the dykes along the collapse scars is that they dip away from rift or embayment axes and are oblique to the collapse walls. This dyke pattern is consistent with the lateral spreading of the sectors long before the collapse events. The slump sides would create the necessary strike-slip movement to promote en échelon dyke patterns. The spreading flank would probably involve a basal decollement. Lateral flank spreading could have been generated by the intense intrusive activity along the rift but sectorial spreading in turn focused intrusive activity and allowed the development of deep intra-volcanic intrusive complexes. With continued magma supply, spreading caused temporary stabilisation of the rift by reducing slopes and relaxing stress. However, as magmatic intrusion persisted, a critical point was reached, beyond which further intrusion led to large-scale flank failure and sector collapse. During the early stages of growth, the rift could have been influenced by regional stress/strain fields and by pre-existing oceanic structures, but its later and mature development probably depended largely on the local volcanic and magmatic stress/strain fields that are effectively controlled by the rift zone growth, the intrusive complex development, the flank creep, the speed of flank deformation and the associated changes in topography. Using different approaches, a similar rift evolution has been proposed in volcanic oceanic islands elsewhere, showing that this model likely reflects a general and widespread process. This study, however, shows that the idea that dykes orient simply parallel to the rift or to the collapse scar walls is too simple; instead, a dynamic interplay between external factors (e.g. collapse, erosion) and internal forces (e.g. intrusions) is envisaged. This model thus provides a geological framework to understand the evolution of the NERZ and may help to predict developments in similar oceanic volcanoes elsewhere.

Keywords

Oceanic island rift zones Lateral collapses Intrusive complex Dykes Lateral flank spreading Tenerife 

Notes

Acknowledgements

L. Mathieu and S. Wiesmaier are thanked for their help in the field. R. Paris provided us with the DEM of Tenerife. D. Chew, A. Tibaldi, V. Acocella, P. Einarsson and two anonymous reviewers are greatly thanked for their comments and suggestions on earlier versions of the manuscript. This work was jointly founded by a National Geographic Society Grant in aid of research award 8106-06 (Petronis and Troll), by an Irish Research Council for Sciences, Engineering and Technology Grant (Delcamp and Troll) and by a Spanish Plan Nacional de I + D + I research project CGL2008-02842/BTE (Carracedo and Pérez-Torrado).

Supplementary material

445_2012_577_MOESM1_ESM.doc (23.8 mb)
ESM 1 (DOC 23.8 MB)

References

  1. Acocella V, Neri M (2009) Dike propagation in volcanic edifices: overview and possible developments. Tectonophysics 471:67–77CrossRefGoogle Scholar
  2. Acocella V, Tibaldi A (2005) Dike propagation driven by volcano collapse: a general model tested at Stromboli, Italy. Geophys Res Lett 32:L08308. doi: 10.1029/2004GL022248 CrossRefGoogle Scholar
  3. Allmendinger RW, Cardozo NC, Fisher D (2012) Structural geology algorithms: vectors & tensors. Cambridge University Press, England, p 289Google Scholar
  4. Ancochea E, Fuster JM, Ibarrola E, Cendrero A, Coello J, Hernan F, Cantagrel JM, Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. J Volc Geotherm Res 4:231–249CrossRefGoogle Scholar
  5. Anguita F, Hernán F (1975) A propagating fracture model versus a hot-spot origin for the Canary Islands. Earth Planet Sci Lett 27:11–19CrossRefGoogle Scholar
  6. Araña V, Ortiz R (1986) Marco geodinámico del volcanismo canario. An Física Vol Esp 82:202–231Google Scholar
  7. Araña V, Ortiz R (1991) The Canary Islands: tectonics, magmatism and geodynamic framework. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings—the Phanerozoic African Plate. Springer, New York, pp 209–249CrossRefGoogle Scholar
  8. Bachèlery P (1981) Le Piton de la Fournaise (Ile de la Réunion): étude volcanologique, structurale et pétrologique. Ph.D. thesis, Université Blaise Pascal, Clermont-FerrandGoogle Scholar
  9. Beck RH, Lehner P (1974) Oceans, new frontiers in exploration. Am Ass Petro Geol Bull 58:376–395Google Scholar
  10. Bonali FL, Corazzato C, Tibaldi A (2011) Identifying rift zones on volcanoes: an example from La Réunion island. Indian Ocean 73:347–366. doi: 10.1007/s00445-010-0416-1 Google Scholar
  11. Borgia A (1994) Dynamic basis of volcano spreading. J Geophys Res 99:17791–17804CrossRefGoogle Scholar
  12. Brooks BA, Foster J, Sandwell D, Wolfe CJ, Okubo P, Poland M, Myer D (2008) Magmatically triggered slow slip at Kilauea Volcano, Hawaii. Science 321(5893):1177CrossRefGoogle Scholar
  13. Canales JP, Dañobeitia JJ, Watts AB (2000) Wide-angle seismic constraints on the internal structure of Tenerife, Canary Islands. J Volcanol Geotherm Res 103:65–81CrossRefGoogle Scholar
  14. Carracedo JC (1994) The Canary Islands; an example of structural control on the growth of large oceanic-island volcanoes. J Volc Geotherm Res 60:225–241CrossRefGoogle Scholar
  15. Carracedo JC (1996) Morphological and structural evolution of the western Canary Islands: hotspot induced three-armed rifts or regional tectonic trends? J Volcanol Geotherm Res 72:151–162CrossRefGoogle Scholar
  16. Carracedo JC (1999) Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. J Volcanol Geotherm Res 94:1–19CrossRefGoogle Scholar
  17. Carracedo JC, Rodríguez Badiola E, Guillou H, Paterne M, Scaillet S, Pérez Torrado FJ, Paris R, Fra-Paleo U, Hansen A (2007) Eruptive and structural history of Teide Volcano and rift zones of Tenerife, Canary Islands. GSA Bull 19:1027–1051. doi: 10.1130/B26087.1 CrossRefGoogle Scholar
  18. Carracedo JC, Guillou H, Nomade S, Rodríguez-Badiola E, Pérez-Torrado FJ, Rodríguez-González A, Paris R, Troll VR, Wiesmaier S, Delcamp A, Fernández-Turiel JL (2010a) Evolution of ocean island rifts: the Northeast rift zone of Tenerife, Canary Islands. Geol Soc Am Bull B30119.1. doi: 10.1130/B30119.1
  19. Carracedo JC, Fernández-Turiel JL, Gimeno D, Guillou H, Klügel A, Krastel S, Paris R, Pérez-Torrado FJ, Rodríguez-Badiola E, Rodríguez-González A, Troll VR, Walter TR, Wiesmaier S (2010b) Comment on “The distribution of basaltic volcanism on Tenerife, Canary Islands: implications on the origin and dynamics of the rift systems” by A. Geyer and J. Martí. Tectonophysics 483:310–326CrossRefGoogle Scholar
  20. Carter A, van Wyk de Vries B, Kelfoun K, Bachèlery P, Briole P (2007) Pits, rifts and slumps: the summit structure of Piton de la Fournaise. Bull Volcanol 69:741–756. doi: 10.1007/s00445-006-0103-4 CrossRefGoogle Scholar
  21. Cayol V, Dieterich JH, Okamura AT, Miklius A (2000) High magma storage rates before the 1983 eruption of Kilauea, Hawaii. Science 288:2343. doi: 10.1126/science.288.5475.2343 CrossRefGoogle Scholar
  22. Clemente CS, Amorós EB, Crespo MG (2007) Dike intrusion under shear stress: effects on magnetic and vesicle fabrics in dikes from rift zones of Tenerife (Canary Islands). J Struct Geol 29:1931–1942CrossRefGoogle Scholar
  23. Deegan FM (2010) Processes of magma–crust interaction: insights from geochemistry and experimental petrology. Ph.D. thesis, Uppsala University, Sweden. Comprehensive summary available at http://uu.diva-portal.org/smash/get/diva2:358897/FULLTEXT01
  24. Delaney P, Pollard DD (1981) Deformation of host rocks and flow of magma during growth of Minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico. US Geol Surv Prof Pap 1202, 61 ppGoogle Scholar
  25. Delcamp A (2010) Evolution of the NE rift-zone of Tenerife, Canary Islands: a multi-disciplinary approach. Ph.D. thesis, Trinity College Dublin, IrelandGoogle Scholar
  26. Delcamp A, van Wyk de Vries B, Troll VR (2007) Endogeneous and exogeneous evolution of a cinder cone: example of Lemptégy cinder cone, Auvergne, France. EGU A-04948, Vienna, AustriaGoogle Scholar
  27. Delcamp A, Petronis MS, Troll VR, Carracedo JC, van Wyk de Vries B, Perez-Torrado FJ (2010) Vertical axis rotation of the upper portions of the north–east rift of Tenerife Island inferred from paleomagnetic data. Tectonophysics 492:40–59CrossRefGoogle Scholar
  28. Delcamp A, van Wyk de Vries B, James MR, Gailler LS, Lebas E (2011) Relationships between volcano gravitational spreading and magma intrusion. Bull Volcanol. doi: 10.1007/s00445-011-0558-9
  29. Dieterich JH (1988) Growth and persistence of Hawaiian volcanic rift zones. J Geophys Res 93:4258–4270CrossRefGoogle Scholar
  30. Duffield W, Stieltjes L, Varet J (1982) Huge landslide blocks in the growth of Piton de la Fournaise, La Reunion and Kilauea Volcano, Hawaii. J Volcanol Geotherm Res 12:147–160CrossRefGoogle Scholar
  31. Elsworth D, Day SJ (1999) Flank collapse triggered by intrusion: the Canarian and Cape Verde Archipelagoes. J Volcanol Geotherm Res 94:323–340CrossRefGoogle Scholar
  32. Elsworth D, Voight B (1996) Evaluation of volcano flank instability triggered by dyke intrusion. Geol Soc Spec Publ 110:45–53CrossRefGoogle Scholar
  33. Famin V, Michon L (2010) Volcano destabilization by magma injections in a detachment. Geology 38:219–222CrossRefGoogle Scholar
  34. Fiske R, Jackson ED (1972) Orientation and growth of Hawaiian volcanic rifts: the effect of regional structure and gravitational stresses. Proc R Soc Lond Ser A 329:299–326CrossRefGoogle Scholar
  35. Fukushima Y, Cayol V, Durand P (2005) Finding realistic dike models from interferometric synthetic aperture radar data: the February 2000 eruption of Piton de la Fournaise. J Geophys Res 110. doi: 10.1029/2004JB003268
  36. Fúster JM, Araña V, Brandle JL, Navarro JM, Alonso U, Aparicio A (1968) Geología y Volcanología de las Islas Canarias: Tenerife. Inst Lucas Mallada, CSIC, Madrid, pp 1–218Google Scholar
  37. Gailler LS, Lénat JF, Lambert M, Levieux G, Villeneuve N, Froger JL (2009) Gravity structure of Piton de la Fournaise volcano and inferred mass transfer during the 2007 crisis. J Volcanol Geotherm Res 184:31–48CrossRefGoogle Scholar
  38. Geyer A, Martí J (2010) The distribution of basaltic volcanism on Tenerife, Canary Islands: implications on the origin and dynamics of the rift systems. Tectonophysics 483:310–326CrossRefGoogle Scholar
  39. Gudmundsson A (2000) Dynamics of volcanic systems in Iceland: example of tectonism and volcanism at juxtaposed hot spot and mid-ocean ridge systems. Ann Rev Earth Planet Sci 28:107–140CrossRefGoogle Scholar
  40. Gudmundsson A (2002) Emplacement and arrest of sheets and dykes in central volcanoes. J Volcanol Geotherm Res 116:279–298CrossRefGoogle Scholar
  41. Gudmundsson A, Marinoni LB, Martí J (1999) Injection and arrest of dykes: implications for volcanic hazards. J Volcanol Geotherm Res 88:1–13CrossRefGoogle Scholar
  42. Guillou H, Carracedo JC, Paris R, Pérez Torrado FJ (2004) Implications for the early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy. Earth Planet Sci Lett 222:599–614CrossRefGoogle Scholar
  43. Hildenbrand A, Gillot P-Y, Le Roy I (2004) Volcano-tectonic and geochemical evolution of an oceanic intra-plate volcano: Tahiti-Nui (French Polynesia). Earth Planet Sci Lett 217:349–365CrossRefGoogle Scholar
  44. Hoek JD (1995) Dyke propagation and arrest in Proterozoic tholeiitic dyke swarms. Vestfold Hills, East Antarctica. In: Baer G, Heimann A (eds) Physics and chemistry of dykes. Balkema, Rotterdam, pp 79–93Google Scholar
  45. Klügel A, Walter TR, Schwarz S, Geldmacher J (2005) Gravitational spreading causes en-echelon diking along a rift zone of Madeira Archipelago: an experimental approach and implications for magma transport. Bull Volcanol 68:37–46CrossRefGoogle Scholar
  46. Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific, OxfordGoogle Scholar
  47. Longpré MA, Troll VR, Hansteen TH (2008) Upper mantle magma storage and transport under a Canarian shield-volcano, Teno, Tenerife (Spain). J Geophys Res 113:B08203. doi: 10.1029/2007JB005422 CrossRefGoogle Scholar
  48. Márquez A, López I, Herrera R, Martín-González F, Izquierdo T, Carreño F (2008) Spreading and potential instability of Teide volcano, Tenerife, Canary Islands. Geophys Res Lett 35:L05305. doi: 10.1029/2007GL032625 CrossRefGoogle Scholar
  49. Martí J, Gudmundsson A (2000) The Las Cañadas caldera (Tenerife, Canary Islands): an overlapping collapse caldera generated by magma-chamber migration. J Volcanol Geotherm Res 103:161–173CrossRefGoogle Scholar
  50. Martí J, Mitjavila J, Araña V (1994) Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Islands). Geol Mag 131:715–727CrossRefGoogle Scholar
  51. Martí J, Hurlimann M, Ablay GJ, Gudmundsson A (1997) Vertical and lateral collapses on Tenerife (Canary Islands) and other volcanic ocean islands. Geology 25:879–882CrossRefGoogle Scholar
  52. Mathieu L, van Wyk de Vries B (2009) Edifice and substrata deformation induced by intrusive complexes and gravitational loading in the Mull volcano (Scotland). Bull Volcanol 71:1133–1148CrossRefGoogle Scholar
  53. McFarlane DJ, Ridley WI (1968) An interpretation of gravity data for Tenerife, Canary Islands. Earth Planet Sci Lett 4:481–486CrossRefGoogle Scholar
  54. McGuire WJ, Pullen AD (1989) Location and orientation of eruptive fissures and feeder dykes at Mount Etna; influence of gravitational and regional stress regimes. J Volcanol Geotherm Res 38:325–344CrossRefGoogle Scholar
  55. Merle O, Lénat JF (2003) Hybrid collapse mechanism at Piton de la Fournaise (Réunion Island, Indian Ocean). J Geophys Res 108:2166CrossRefGoogle Scholar
  56. Merle O, Mairine P, Michon L, Bachèlery P, Smietana M (2010) Calderas, landslides and paleo-canyons on Piton de la Fournaise volcano (La Réunion Island, Indian Ocean). J Volcanol Geotherm Res 189:131–142CrossRefGoogle Scholar
  57. Oehler JF, van Wyk de Vries B, Labazuy P (2005) Landslides and spreading of oceanic hot-spot and arc shield volcanoes on Low Strength Layers (LSLs): an analogue modeling approach. J Volcanol Geotherm Res 144:169–189CrossRefGoogle Scholar
  58. Porreca M, Acocella V, Massimi E, Mattei M, Funiciello R, De Benedetti AA (2006) Geometric and kinematic features of the dike complex at Mt. Somma, Vesuvio (Italy). Earth Planet Sci Lett 245:389–407CrossRefGoogle Scholar
  59. Robertson AHF, Stillman CJ (1979) Submarine volcanic and associated sedimentary rocks of the Fuerteventura Basal Complex, Canary Islands. Geol Mag 116:203–214CrossRefGoogle Scholar
  60. Rodríguez-Losada JA, Hernández-Gutiérrez LE, Olalla C, Perucho A, Serrano A, Eff-Darwich A (2009) Geomechanical parameters of intact rocks and rock masses from the Canary Islands: implications on their flank stability. J Volcanol Geotherm Res 182:67–75CrossRefGoogle Scholar
  61. Swanson DA, Duffield WA, Fiske RS (1976) Displacement of the south flank of Kilauea Volcano: the result of forceful intrusion of magma into the rift zone. US Geol Surv Prof Pap 963:39Google Scholar
  62. Tibaldi A (2001) Multiple sector collapses at Stromboli volcano, Italy: how they work. Bull Volcanol 63:112–125CrossRefGoogle Scholar
  63. Tibaldi A (2003) Influence of cone morphology on dykes, Stromboli, Italy. J Volcanol Geotherm Res 126:79–95CrossRefGoogle Scholar
  64. van Bemmelen RW (1949) The geology of Indonesia: general geology of Indonesia and adjacent archipelagos. Gov. Print. Off, The HagueGoogle Scholar
  65. van Wyk de Vries B, Matela R (1998) Styles of volcano-induced deformation: numerical models of substratum flexure, spreading and extrusion. J Volcanol Geotherm Res 81:1–18Google Scholar
  66. van Wyk de Vries B, Cecchi E, Robineau B, Merle O, Batchèlery P (2001) Factors governing the volcano-tectonic evolution of La Réunion Island: a morphological, structural and laboratory modelling approach. J Conf Abst 6:800Google Scholar
  67. Walker GPL (1992) Coherent intrusion complexes in large basaltic volcanoes; a new structural model. Essays on magmas and other earth fluids; a volume in appreciation of Harris PG, Cox KG, Baker PE. Elsevier 50:41–54Google Scholar
  68. Walter TR, Troll VR (2003) Experiments on rift zone evolution in unstable volcanic edifices. J Volcanol Geotherm Res 127:107–120CrossRefGoogle Scholar
  69. Walter TR, Troll VR, Cailleau B, Belousov A, Schmincke HU, Bogaard P, Amelung F (2005) Rift zone reorganization through flank instability on ocean island volcanoes: Tenerife, Canary Islands. Bull Volcanol 67:281–291CrossRefGoogle Scholar
  70. Walter TR, Klügel A, Münn S (2006) Gravitational spreading and formation of new rift zones on overlapping volcanoes. Terra Nova 18:26–33CrossRefGoogle Scholar
  71. Watts AB (1994) Crustal structure, gravity anomalies and flexure of the lithosphere in the vicinity of the Canary Islands. Geophys Int 119:648–666CrossRefGoogle Scholar
  72. Watts AB, Masson DG (1995) A giant landslide on the north flank of Tenerife, Canary Islands. J Geophys Res 100:24487–24498CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. Delcamp
    • 1
    • 5
    Email author
  • V. R. Troll
    • 1
    • 6
  • B. van Wyk de Vries
    • 2
  • J. C. Carracedo
    • 3
  • M. S. Petronis
    • 4
  • F. J. Pérez-Torrado
    • 3
  • F. M. Deegan
    • 1
    • 6
  1. 1.Department of Geology, Museum BuildingTrinity College DublinDublin 2Ireland
  2. 2.Laboratoire Magmas et Volcans CNRS-UMR 6524Université Blaise Pascal, Laboratoire Magmas et Volcans, LMV, CNRS, UMR 6524, IRD R163Clermont-FerrandFrance
  3. 3.GEOVOL, Dpto. FísicaUniversidad de Las Palmas de Gran CanariaLas PalmasSpain
  4. 4.Environmental Geology Natural Resource Management DepartmentNew Mexico Highlands UniversityLas VegasUSA
  5. 5.Department of GeographyVrije Universiteit BrusselBrusselsBelgium
  6. 6.Department of Earth Sciences, CEMPEG, Section for Mineralogy, Petrology and TectonicsUppsala UniversityUppsalaSweden

Personalised recommendations