Advertisement

Bulletin of Volcanology

, Volume 74, Issue 3, pp 743–765 | Cite as

Relationships between volcano gravitational spreading and magma intrusion

  • Audray DelcampEmail author
  • Benjamin van Wyk de Vries
  • Mike R. James
  • L. S. Gailler
  • E. Lebas
Research Article

Abstract

Volcano spreading, with its characteristic sector grabens, is caused by outward flow of weak substrata due to gravitational loading. This process is now known to affect many present-day edifices. A volcano intrusive complex can form an important component of an edifice and may induce deformation while it develops. Such intrusions are clearly observed in ancient eroded volcanoes, like the Scottish Palaeocene centres, or in geophysical studies such as in La Réunion, or inferred from large calderas, such as in Hawaii, the Canaries or Galapagos volcanoes. Volcano gravitational spreading and intrusive complex emplacement may act simultaneously within an edifice. We explore the coupling and interactions between these two processes. We use scaled analogue models, where an intrusive complex made of Golden syrup is emplaced within a granular model volcano based on a substratum of a ductile silicone layer overlain by a brittle granular layer. We model specifically the large intrusive complex growth and do not model small-scale and short-lived events, such as dyke intrusion, that develop above the intrusive complex. The models show that the intrusive complex develops in continual competition between upward bulging and lateral gravity spreading. The brittle substratum strongly controls the deformation style, the intrusion shape and also controls the balance between intrusive complex spreading and ductile layer-related gravitational spreading. In the models, intrusive complex emplacement and spreading produce similar structures to those formed during volcano gravitational spreading alone (i.e. grabens, folds, en échelon fractures). Therefore, simple analysis of fault geometry and fault kinetic indicators is not sufficient to distinguish gravitational from intrusive complex spreading, except when the intrusive complex is eccentric from the volcano centre. However, the displacement fields obtained for (1) a solely gravitational spreading volcano and for (2) a gravitational spreading volcano with a growing and spreading intrusive complex are very different. Consequently, deformation fields (like those obtained from geodetic monitoring) can give a strong indication of the presence of a spreading intrusive complex. We compare the models with field observations and geophysical evidence on active volcanoes such as La Réunion Island (Indian Ocean), Ometepe Island (Nicaragua) and eroded volcanic remnants such as Ardnamurchan (Scotland) and suggest that a combination between gravitational and intrusive complex spreading has been active.

Keywords

Volcano Intrusive complex Spreading Gravitational spreading Rift zone Analogue models 

Notes

Acknowledgements

Tate and Lyle kindly provided us with all the Golden syrup we wished for. The work was partially supported by ANR 06-CATT-013-01 grant VOLKARISK. The authors acknowledge the two anonymous reviewers for their constructive comments that greatly help to improve the manuscript.

References

  1. Annen C, Lénat JF, Provost A (2001) The long-term growth of volcanic edifices: numerical modeling of the role of dyke intrusion and lava-flow emplacement. J Volcanol Geotherm Res 105:263–289CrossRefGoogle Scholar
  2. Arnaud N (2005) Les Processus de démantèlement des volcans, cas d’un volcan bouclier en milieu océanique : Le Piton des Neiges (île de La Réunion). PhD Thesis, Université de La Réunion, Saint DenisGoogle Scholar
  3. Bachèlery P (1981) Le Piton de la Fournaise (Ile de la Réunion): étude volcanologique, structurale et pétrologique. PhD Thesis, Université Blaise Pascal, Clermont-FerrandGoogle Scholar
  4. Bailey EB, Clough CT, Wright WB, Richey JE, Wilson GV (1924) Tertiary and post-tertiary geology of Mull Loch Aline and Oban. British Geological Survey. Mem Geol Surv Great Brit 44:172–184Google Scholar
  5. Beauducel F, Cornet FH, Suhanto E, Duquesnoy T, Kasser M (2000) Constraints on magma flux from displacements data at Merapi volcano, Java. J Geophys Res 105:8193–8204CrossRefGoogle Scholar
  6. Borgia A (1994) Dynamic basis of volcano spreading. J Geophys Res 99:17791–17804CrossRefGoogle Scholar
  7. Borgia A, van Wyk de Vries B (2003) The volcano-tectonic evolution of Concepción, Nicaragua. Bull Volcanol 65:248–266CrossRefGoogle Scholar
  8. Borgia A, Burr J, Montero W, Morales LD, Alvarado GE (1990) Fault-propagation folds induced by gravitational failure and slumping of the Central Costa Rica volcanic range: implications for large terrestrial and Martian volcanic edifices. J Geophys Res 95:14,357–14,382CrossRefGoogle Scholar
  9. Borgia A, Ferrari L, Pasquarè G (1992) Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357:231–235CrossRefGoogle Scholar
  10. Borgia A, Delaney PT, Denlinger RP (2000) Spreading volcanoes. Annu Rev Earth Planet Sci 28:3409–3412CrossRefGoogle Scholar
  11. Brooks BA, Foster J, Sandwell D, Wolfe CJ, Okubo P, Poland M, Myer D (2008) Magmatically triggered slow slip at Kilauea Volcano, Hawaii. Science 321(5893):1177CrossRefGoogle Scholar
  12. Carena S, Borgia A, Pasquarè G, Battaglia A, Ferraris M, Martelli L, De Nardo MT (2000) Gravity synclines. J Geophys Res 105:21,819–21,833CrossRefGoogle Scholar
  13. Cayol V, Dieterich JH, Okamura AT, Miklius A (2000) High magma storage rates before the 1983 eruption of Kilauea, Hawaii. Science 288:2343. doi: 10.1126/science.288.5475.2343 CrossRefGoogle Scholar
  14. Cecchi E (2003) Reconstruction 3D pour la volcanologie : apports d’une méthode multi-vues par photogrammétrie numérique. PhD Thesis, Université B.Pascal, Clermont-Ferrand, pp. 132–134Google Scholar
  15. Chiocci FL, Coltelli M, Bosman A, Cavallaro D (2011) Continental margin large-scale instability controlling the flank sliding of Etna volcano. Earth Planet Sci Lett 305:57–64CrossRefGoogle Scholar
  16. Clague DA, Denlinger RP (1994) Role of olivine cumulates in destabilizing the flanks of Hawaiian volcanoes. Bull Volcanol 56:425–434CrossRefGoogle Scholar
  17. Delaney PT, Fiske RS, Miklius A, Okamura AT, Sako M (1990) Deep magma body beneath the summit and rift zones of Kilauea Volcano, Hawaii. Science 247:1311–1346CrossRefGoogle Scholar
  18. Delcamp A, van Wyk de Vries B, James MR (2008) The influence of edifice slope and substrata on volcano spreading. J Volcanol Geotherm Res 177:925–943CrossRefGoogle Scholar
  19. Dieterich JH (1988) Growth and persistence of Hawaiian volcanic rift zones. J Geophys Res 93:4258–4270CrossRefGoogle Scholar
  20. Donnadieu F (2000) Déstabilisation des édifices volcaniques par les cryptodômes: modélisation analogique et approche numérique. PhD Thesis, Université B.Pascal, Clermont-Ferrand, p. 39Google Scholar
  21. Famin V, Michon L (2010) Volcano destabilization by magma injections in a detachment. Geology 38:219–222CrossRefGoogle Scholar
  22. Francis P, Oppenheimer C, Stevenson D (1993) Endogenous growth of persistently active volcanoes. Nature 366:554–557CrossRefGoogle Scholar
  23. Froger JL, Fukushima Y, Briole P, Staudacher T, Souriot T, Villeneuve N (2004) The deformation field of the August 2003 eruption at Piton de la Fournaise, Reunion Island, mapped by ASAR interferometry. Geophys Res Letters 31:L14601, 5 PPCrossRefGoogle Scholar
  24. Fukushima Y, Cayol V, Durand P (2005) Finding realistic dike models from interferometric synthetic aperture radar data: the February 2000 eruption of Piton de la Fournaise. J Geophys Res 110. doi: 10.1029/2004JB003268
  25. Gailler LS (2010) Structure interne d’un système volcanique océanique de type point chaud, La Réunion: Approches géophysiques. PhD thesis, University B. Pascal, Clermont-FerrandGoogle Scholar
  26. Gailler LS, Lénat JF (2010) Three-dimensional structure of the submarine flanks of La Réunion inferred from geophysical data. J Geophys Res B: Solid Earth 115:B12105CrossRefGoogle Scholar
  27. Gailler LS, Lénat JF, Lambert M, Levieux G, Villeneuve N, Froger JL (2009) Gravity structure of Piton de la Fournaise volcano and inferred mass transfer during the 2007 crisis. J Volcanol Geotherm Res 184:31–48CrossRefGoogle Scholar
  28. Hasenaka T, Carmichael ISE (1985) The cinder cone of Michoacan-Guanajauto, Central Mexico: their age, volume, distribution and magma discharge rate. J Volcanol Geotherm Res 25:105–124CrossRefGoogle Scholar
  29. Hill DP, Zucca JJ (1987) Geophysical constraints on the structure of Kilauea and Mauna Loa volcanoes and some implications for seismomagmatic processes. U.S. Geol Surv Prof Pap 1350 pp 903–917Google Scholar
  30. Holohan EP, van Wyk de Vries B, Troll VR (2008) Analogue models of caldera collapse in strike-slip tectonic regimes. Bull Volcanol. doi: 10.1007/s00445-007-0166-x
  31. Hubbert MK (1937) Theory of scale models as applied to the study of geologic structures. Bull Geol Soc Am 48:1459–1520Google Scholar
  32. Kauahikaua J, Hildenbrand TG, Webring M (2000) Deep magmatic structures of Hawaiian volcanoes; imaged by three-dimensional gravity models. Geology 28(10):883–886CrossRefGoogle Scholar
  33. Lebas E (2009) Genèse et nature de la fracturation des édifices volcaniques: de l’échelle du volcan à l’échelle de la coulée. Ms Thesis, University B. Pascal, Clermont-Ferrand, p. 51Google Scholar
  34. Lénat JF, Gibert-Malengreau B, Galdeano A (2001) A new model for the evolution of the volcanic island of Réunion (Indian Ocean). J Geophys Res B106(5):8645–8663CrossRefGoogle Scholar
  35. Malengreau B, Lénat JF, Froger JL (1999) Structure of Réunion Island (Indian Ocean) inferred from the interpretation of gravity anomalies. J Volcanol Geotherm Res 88:131–146CrossRefGoogle Scholar
  36. Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petrol 78:85–98CrossRefGoogle Scholar
  37. Mathieu L, van Wyk de Vries B (2009) Edifice and substrata deformation induced by intrusive complexes and gravitational loading in the Mull volcano (Scotland). Bull Volcanol 71(10):1133–1148CrossRefGoogle Scholar
  38. Mathieu L, van Wyk de Vries B, Holohan EP, Troll VR (2008) Dykes, cups, saucers and sills: analogue experiments on magma intrusion into brittle rocks. Earth Planet Sci Lett 271(1–4):1–13CrossRefGoogle Scholar
  39. McNight SB, Williams SN (1997) Old cinder cone or young composite volcano? The nature of Cerro Negro, Nicaragua. Geology 25:339–342CrossRefGoogle Scholar
  40. Merle O, Borgia A (1996) Scaled experiments of volcanic spreading. J Geophys Res 101:13,805–13,817CrossRefGoogle Scholar
  41. Merle O, Lénat JF (2003) Hybrid collapse mechanism at Piton de La Fournaise volcano, Réunion Island, Indian Ocean. J Geophys Res 108(B3):2166CrossRefGoogle Scholar
  42. Merle O, Vendeville B (1992) Modélisation analogique de chevauchements induits par des intrusions magmatiques. C R Acad Sci Paris 315(série II):1541–1547Google Scholar
  43. Merle O, Mairine P, Michon L, Bachèlery P, Smietana M (2010) Calderas, landslides and paleo-canyons on Piton de la Fournaise volcano (La Réunion Island, Indian Ocean). J Volcanol Geotherm Res 189:131–142CrossRefGoogle Scholar
  44. Michon L, Saint-Ange F (2008) Morphology of Piton de la Fournaise basaltic shield volcano (La Réunion Island): characterization and implication in the volcano evolution. J Volcanol Geotherm Res 113(B03203):1–19Google Scholar
  45. Michon L, Saint-Ange F, Bachèlery P, Villeneuve N, Staudacher T (2007) Role of the structural inheritance of the oceanic lithosphere in the magmato-tectonic evolution of Piton de la Fournaise volcano (La Réunion Island). J Geophys Res 112:B04205CrossRefGoogle Scholar
  46. Middleton GV, Wilcock PR (1994) Mechanics in the Earth and environmental sciences. Cambridge University Press, CambridgeGoogle Scholar
  47. Mogi (1958) Relation between the eruptions of various volcanoes and deformations of the ground surfaces around them. Bull Earth Res Inst 36:99–134Google Scholar
  48. Morgan JK, McGovern PJ (2005) Discrete element simulations of gravitational volcanic deformation: 1. Deformation structures and geometries. J Geophy Res 110:B05402. doi: 10.1029/2004JB003252 CrossRefGoogle Scholar
  49. Morgan JK, Moore GF, Clague DA (2003) Slope failure and volcanic spreading along the submarine south flank of Kilauea volcano, Hawaii. J Geophy Res 108:24–15. doi: 10.1029/2003JB002411 CrossRefGoogle Scholar
  50. Münn S, Walter TR, Klügel A (2006) Gravitationnal spreading controls rift zones and flank instabilities on El Hierro, Canary Island. Geol Mag 143(3):257–268CrossRefGoogle Scholar
  51. Murase T, McBirney AR (1973) Properties of some common igneous rocks and their melts at high temperatures. Bull Geol Soc Amer 84:3563–3592CrossRefGoogle Scholar
  52. O’Driscoll B, Troll VR, Reavy J, Turner P (2006) The Great Eucrite intrusion of Ardnamurchan, Scotland: re-evaluation of the ring-dyke concept. Geology 34:189–192CrossRefGoogle Scholar
  53. Oehler JF, van Wyk de Vries B, Labazuy P (2005) Landslides and spreading of oceanic hot-spot and arc shield volcanoes on Low Strength Layers (LSLs): an analogue modeling approach. J Volcanol Geotherm Res 144(1–4):169–189CrossRefGoogle Scholar
  54. Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am 82:1018–1040Google Scholar
  55. Okubo S, Watanabe H (1989) Gravity change caused by a fissure eruption. Geophys Res Lett 16:445–448CrossRefGoogle Scholar
  56. Okubo PG, Benz HM, Chouet BA (1997) Imaging the crustal magma sources beneath Mauna Loa and Kilauea volcanoes, Hawaii. Geology 25:865–870CrossRefGoogle Scholar
  57. Ramberg H (1981) Gravity, deformation and the Earth’s crust in theory, experiments and geologic application, vol 2. Academic, London, p 452Google Scholar
  58. Rançon JP (1985) Hydrothermal history of Piton des Neiges volcano (Réunion Island, Indian Ocean). J Volcanol Geotherm Res 26:297–315CrossRefGoogle Scholar
  59. Rançon JP (1990) Lithostratigraphie du forage du Grand Brûlé. Implications volcanologiques. In: Lénat JF (ed) Le volcanisme de la Réunion. Monographie. Centre de Recherches Scientifiques, Clermont-Ferrand, pp 187–200Google Scholar
  60. Rançon JP, Lerebour P, Auge T (1987) Mise en évidence par forage d’une chambre magmatique ancienne à l’aplomb de la zone orientale du Piton de La Fournaise (Ile de La Réunion). Implications volcanologiques. CR Acad Sc Paris 304:55–60Google Scholar
  61. Robson S, Shortis MR (2004) Visual Measurement System. http://www.geomsoft.com
  62. Roche O, van Wyk de Vries B, Druitt TH (2001) Sub-surface structures and collapse mechanisms of summit pit craters. J Volcanol Geotherm Res 105:1–18CrossRefGoogle Scholar
  63. Rosenberg CL (2001) Deformation of partially molten granite: a review and comparison of experimental and natural case studies. Int J Earth Sciences 90:60–76CrossRefGoogle Scholar
  64. Swanson DA, Duffield WA, Fiske RS (1976) Displacement of the south flank of Kilauea Volcano: the result of forceful intrusion of magma into the rift zone. US Geol Surv Prof Pap 963:39Google Scholar
  65. Tyrell GM (1928) The geology of Arran. PhD Thesis, Glasgow University, British Geological SurveyGoogle Scholar
  66. Upton BGJ, Wadsworth WJ (1965) Geology of Réunion Island, Indian Ocean. Nature 207:151–154CrossRefGoogle Scholar
  67. Van Bemmelen RW (1949) The geology of Indonesia: general geology of Indonesia and adjacent archipelagos. Government Printing Office, The HagueGoogle Scholar
  68. van Wyk de Vries B, Matela R (1998) Volcano-induced deformation: numerical models of substratum flexure, spreading and extrusion. J Volcanol Geotherm Res 81:1–18Google Scholar
  69. van Wyk de Vries B, Cecchi E, Robineau B, Merle O, Batchèlery P (2001) Factors governing the volcano-tectonic evolution of La Réunion Island: a morphological, structural and laboratory modelling approach. Journal of Conference Abstracts 6:800Google Scholar
  70. Wadge G (1982) Steady state of volcanism: evidence from eruptive histories of polygenetic volcanoes. J Volcanol Geotherm Res 87:4035–4039Google Scholar
  71. Walter TR, Klügel A, Münn S (2006) Rift zone formation on overlapping volcanoes by gravitational spreading. Terra Nova 18:26–33Google Scholar
  72. Wicks CW, Dzurisin D, Ingebritsen S, Thatcher W, Lu Z, Iverson J (2002) Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade range, USA. Geophys Res Let 29:10–1029CrossRefGoogle Scholar
  73. Wooller L, van Wyk de Vries B, Murray JB, Rymer H, Meyer S (2004) Volcano spreading controlled by dipping substrata. Geology 32(7):573–576CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Audray Delcamp
    • 1
    • 2
    Email author
  • Benjamin van Wyk de Vries
    • 1
  • Mike R. James
    • 3
  • L. S. Gailler
    • 1
  • E. Lebas
    • 1
  1. 1.Laboratoire Magmas et Volcans CNRS-UMR 6524, Observatoire du Physique du Globe de ClermontUniversité Blaise PascalClermont-FerrandFrance
  2. 2.Department of GeographyEarth System Sciences, Vrije Universiteit BrusselBrusselBelgium
  3. 3.Lancaster Environment CentreLancaster UniversityLancasterUK

Personalised recommendations