Advertisement

Bulletin of Volcanology

, Volume 74, Issue 2, pp 457–482 | Cite as

Scales of columnar jointing in igneous rocks: field measurements and controlling factors

  • György HetényiEmail author
  • Benoît Taisne
  • Fanny Garel
  • Étienne Médard
  • Sonja Bosshard
  • Hannes B. Mattsson
Research Article

Abstract

Columnar jointing is a common feature of solidified lavas, sills and dikes, but the factors controlling the characteristic stoutness of columns remain debated, and quantitative field observations are few in number. In this paper, we provide quantitative measurements on sizing of columnar joint sets and our assessment of the principal factors controlling it. We focus on (1) chemistry, as it is the major determinant of the physical (mechanical and thermal) properties of the lava, and (2) geology, as it influences the style of emplacement and lava geometry, setting boundary conditions for the cooling process and the rate of heat loss. In our analysis, we cover lavas with a broad range of chemical compositions (from basanite to phonolite, for six of which we provide new geochemical analyses) and of geological settings. Our field measurements cover 50 columnar jointing sites in three countries. We provide reliable, manually digitized data on the size of individual columns and focus the mathematical analysis on their geometry (23,889 data on side length, of which 17,312 are from full column sections and 3,033 data on cross-sectional area and order of polygonality). The geometrical observations show that the variation in characteristic size of columns between different sites exceeds one order of magnitude (side length ranging from 8 to 338 cm) and that the column-bounding polygons’ average order is less than 6. The network of fractures is found to be longer than required by a minimum-energy hexagonal configuration, indicating a non-equilibrium, geologically quick process. In terms of the development and characteristic sizing of columnar joint sets, our observations suggest that columns are the result of an interplay between the geological setting of emplacement and magma chemistry. When the geological setting constrains the geometry of the emplaced body, it exerts a stronger control on characteristic column stoutness. At unconstrained geometries (e.g. unconfined lava flows), chemistry plays the major role, resulting in stouter columns in felsic lavas and slenderer columns in mafic lavas.

Keywords

Columnar jointing Factors influencing column size Column size measurements Chemical composition Geological setting Geometry of the emplacement Cooling rate 

Notes

Acknowledgements

We greatly thank the reviewer Károly Németh and the editor James White for their constructive comments and support; the manuscript has much benefited from their reviews. We acknowledge Dan Morgan, Csaba Szabó and Anita Grunder for interesting discussions and inputs. We thank Klára Kóthay for providing major-element composition data from her Ph.D. before publication. We greatly thank Sándor Takács (Szilváskő) and Károly Kuris (Uzsa) for their guidance and their hospitality, as well as József Medve (Szanda), István Perger (Haláp, Hajagos) and the Balaton Uplands National Park (Hegyestű) for providing access to and information on different sites. We also thank Béla Runtág, Paul and Marie-Thérèse Médard, Jurij Ponomarenko and the Department of Geophysics at Eötvös University Budapest for their practical help. We finally thank Lydia Zehnder for her assistance and help in performing XRF analyses and Thomas Good for his help in sample preparation. The fieldwork in France and Hungary was supported by the William B. and Elizabeth Behr Agocs Geophysical Research Fund Award of G.H.

Supplementary material

445_2011_534_MOESM1_ESM.kmz (3 kb)
Geographical location of columnar jointing sites (in Google Earth format). (KMZ 2.86 kb)

References

  1. Aydin A, DeGraff JM (1988) Evolution of polygonal fracture patterns in lava flows. Science 239:471–476CrossRefGoogle Scholar
  2. Bout P (1960) Le Villafranchien du Velay et du bassin hydrographique moyen et supérieur de l’Allier. Imprimerie Jeanne-d’Arc, Le Puy en Velay, 1–344 pp (in French)Google Scholar
  3. Brousse R (1961) Analyses chimiques des roches volcaniques tertiaires et quaternaires de la France. Bull Serv Carte Géol Fr 263(58):1–140 (in French)Google Scholar
  4. Brousse R, Tempier P, Rançon JP, Veyret-Mekdjian Y (1989) Notice explicative, carte géologique de la France (1/50000), feuille Bourg-Lastic. Bureau de Recherches Géologiques et Minières, Orléans, pp 1–78, in FrenchGoogle Scholar
  5. Brousse R, Rançon JP, Le Garrec MJ, Veyret-Mekdjian Y, Medhizadeh H, Mervoyer B, Musengié M (1990) Notice explicative, carte géologique de la France (1/50000), feuille La Tour-d’Auvergne. Bureau de Recherches Géologiques et Minières, Orléans, pp 1–68 (in French)Google Scholar
  6. Budkewitsch P, Robin PY (1994) Modelling the evolution of columnar joints. J Volcanol Geotherm Res 59:219–239CrossRefGoogle Scholar
  7. Bulkeley RB (1693) Part of a letter concerning the Giants Causeway in the County of Atrim in Ireland. Trans Roy Soc London 17:708–710CrossRefGoogle Scholar
  8. Büttner R, Dellino P, Raue H, Sonder I, Zimanowski B (2006) Stress-induced brittle fragmentation of magmatic melts: theory and experiments. J Geophys Res 111:B08204. doi: 10.1029/2005JB003958 CrossRefGoogle Scholar
  9. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, Oxford, pp 1–510Google Scholar
  10. Castro JM, Beck P, Tuffen H, Nichols ARL, Dingwell DB, Martin MC (2008) Timescales of spherulite crystallization in obsidian inferred from water concentration profiles. Am Mineral 93:1816–1822CrossRefGoogle Scholar
  11. Cheguer L (1990) Interprétation quantitative de la prismation des laves. Master thesis, Université Blaise Pascal, Clermont-Ferrand, 1–45 (in French)Google Scholar
  12. DeGraff JM, Aydin A (1987) Surface morphology of columnar joints and its significance to mechanics and direction of joint growth. Geol Soc Am Bull 99:605–617CrossRefGoogle Scholar
  13. DeGraff JM, Long PE, Aydin A (1989) Use of joint-growth directions and rock textures to infer thermal regimes during solidification of basaltic lava flows. J Volcanol Geotherm Res 38:309–324CrossRefGoogle Scholar
  14. Demarest N (1774) Mémoire sur l’origine et la nature du basalte à grandes colonnes polygones, déterminées par l’histoire naturelle de cette pierre, observée en Auvergne. Histoire et mémoires de l’Académie Royale des Sciences, Année 1771, Paris, pp 705–775Google Scholar
  15. Demarest N (1777) Mémoire sur le basalte, troisème partie. Histoire et mémoires de l’Académie Royale des Sciences, Année 1773, Paris, pp 599–670Google Scholar
  16. Dingwell DB (1995) Relaxation in silicate melts: some applications. In: Stebbins JF, McMillan PF, Dingwell DB (eds) Structure, dynamics and propertied of silicate melts. Rev Mineral Geochem 32, pp 21–66Google Scholar
  17. Dingwell DB (1996) Volcanic dilemma: flow or blow? Science 273:1054–1055CrossRefGoogle Scholar
  18. Dobosi G, Fodor RV, Goldberg SA (1995) Late-Cenozoic alkalic basalt magmatism in Northern Hungary and Slovakia: petrology, source compositions and relationship to tectonics. Acta Vulcanol 7(2):199–207Google Scholar
  19. Embey-Isztin A, Downes H, James DE, Upton BGJ, Dobosi G, Ingram GA, Harmon RS, Scharbert HG (1993) The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. J Petrol 34(2):317–343Google Scholar
  20. Gilbert CM (1938) Welded tuff in eastern California. Geol Soc Am Bull 49:1829–1862Google Scholar
  21. Gilman JJ (2009) Basalt columns, large scale constitutional supercooling? J Volcanol Geotherm Res 184:347–350CrossRefGoogle Scholar
  22. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134CrossRefGoogle Scholar
  23. Gméling K, Németh K, Martin U, Eby N, Varga Z (2007) Boron concentrations of volcanic fields in different geotectonic settings. J Volcanol Geotherm Res 159:70–84CrossRefGoogle Scholar
  24. Goehring L, Morris SW (2005) Order and disorder in columnar joints. Europhys Lett 69:739–745CrossRefGoogle Scholar
  25. Goehring L, Lin Z, Morris SW (2006) An experimental investigation of the scaling of columnar joints. Phys Rev E 74:036115CrossRefGoogle Scholar
  26. Goehring L, Mahadevan L, Morris SW (2009) Nonequilibrium scale selection mechanism for columnar jointing. Proc Nat Acad Sci 106(2):387–392CrossRefGoogle Scholar
  27. Goër de Hervé A (1972) La planèze de Saint-Flour. Ph.D. thesis, Université Blaise-Pascal, Clermont-Ferrand, 1–244 (in French)Google Scholar
  28. Goto Y, McPhie J (1998) Endogenous growth of a Miocene submarine dacite cryptodome, Rebun Island, Hokkaido, Japan. J Volcanol Geotherm Res 84:273–286CrossRefGoogle Scholar
  29. Gray NH (1986) Symmetry in a natural fracture pattern: the origin of columnar joint networks. Comp & Maths with Appls 12B(3/4):531–545Google Scholar
  30. Grossenbacher KA, McDuffie SM (1995) Conductive cooling of lava: columnar joint diameter and stria width as functions of cooling rate and thermal gradient. J Volcanol Geotherm Res 69:95–103CrossRefGoogle Scholar
  31. Guillou H, Van Vliet-Lanoë B, Guðmundsson A, Nomade S (2010) New unspiked K–Ar ages of Quaternary sub-glacial and sub-aerial volcanic activity in Iceland. Quat Geochronol 5:10–19. doi: 10.1016/j.quageo.2009.08.007 CrossRefGoogle Scholar
  32. Guy B (2010) Comments on “Basalt columns: large scale constitutional supercooling?” by John Gilman (JVGR, 2009) and presentation of some new data. J Volcanol Geotherm Res 194:69–73CrossRefGoogle Scholar
  33. Guy B, Le Coze J (1990) Reflections on columnar jointing of basalts: the instability of the planar solidification front. Comptes rendus de l’Académie des sciences Paris 311(II):943–949Google Scholar
  34. Harangi SZ, Vaselli O, Tonarini S, Szabó CS, Harangi R, Coradossi N (1995) Petrogenesis of Neogene extension-related alkaline volcanic rocks of the Little Hungarian Plain Volcanic Field (Western Hungary). In: Downes H, Vaselli O (eds) Neogene and related magmatism in the Carpatho-Pannonian Region. Acta Vulcanol 7, pp 173–187Google Scholar
  35. Hardarson BS, Fitton JG, Ellam RM, Pringle MS (1997) Rift relocation—a geochemical and geochronological investigation of a palaeo-rift in northwest Iceland. Earth Planet Sci Lett 153:181–196CrossRefGoogle Scholar
  36. Hédervári P (1981) Évezredek, vulkánok, emberek (Millennia, volcanoes, men). Univerzum, Budapest, p 310 (in Hungarian)Google Scholar
  37. Hemond C, Arndt N, Lichtenstein U, Hofmann A, Oskarsson N, Steinthorsson S (1993) The heterogeneous Iceland plume: Nd–Sr–O isotopes and trace element constraints. J Geophys Res 98:15833–15850. doi: 10.1029/93JB01093 CrossRefGoogle Scholar
  38. Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows—observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106:351–370CrossRefGoogle Scholar
  39. Hull D, Caddock BD (1999) Simulation of prismatic cracking of cooling basalt lava flows by the drying of sol-gels. J Materials Sci 34:5707–5720CrossRefGoogle Scholar
  40. Huppert EH, Shepherd JB, Sigurdsson H, Sparks RSJ (1982) On lava dome growth, with application to the 1979 lava extrusion of the Soufrière of St. Vincent. J Volcanol Geotherm Res 14:199–222CrossRefGoogle Scholar
  41. Jaeger JC (1961) The cooling of irregularly shaped igneous bodies. Am J Sci 259:721–731CrossRefGoogle Scholar
  42. Jakobsson SP (1972) Chemistry and distribution pattern of recent basaltic rocks in Iceland. Lithos 5:365–386. doi: 10.16/0024-4937(72)90090-4 CrossRefGoogle Scholar
  43. Jaupart C, Allègre CJ (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet Sci Lett 102:413–429. doi: 10.1016/0012-821X(91)90032-D CrossRefGoogle Scholar
  44. Juhász Á (1987) Évmilliók emlékei (Souvenirs of millions of years). Gondolat, Budapest (in Hungarian)Google Scholar
  45. Karner FR, Halvorson DL (1989) Geology of the Devils Tower and Missouri Buttes region. In: Karner FR (ed) Devils Tower—Black Hills alkalic igneous rocks and general geology, field trip guidebook T131. American Geophysical Union, Washington, DC, pp 70–74Google Scholar
  46. Kattenhorn SA, Schaefer CJ (2008) Thermal–mechanical modeling of cooling history and fracture development in inflationary basalt lava flows. J Volcanol Geotherm Res 170:181–197CrossRefGoogle Scholar
  47. Kereszturi G, Nemeth K, Csillag G, Balogh K, Kovács J (2011) The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J Volcanol Geotherm Res 201:227–240. doi: 10.1016/j.jvolgeores.2010.08.018 CrossRefGoogle Scholar
  48. Konrad J-M, Ayad R (1997) Desiccation of a sensitive clay: field experimental observations. Can Geotech J 34:929–942Google Scholar
  49. Kóthay K (2009) The evolution of alkali basaltic magma based on the study of silicate melt inclusions from Hegyestű and Haláp, Balaton Highland. Ph.D. thesis, Dept. of Petrology and Geochemistry, Eötvös Loránd University, Budapest, 1–164 (in Hungarian)Google Scholar
  50. Long PE, Wood BJ (1986) Structures, textures and cooling histories of Columbia River basalt flows. Geol Soc Am Bull 97:1144–1155CrossRefGoogle Scholar
  51. Lore J, Gao H, Aydin A (2000) Viscoelastic thermal stress in cooling basalt flows. J Geophys Res 105:23695–23709CrossRefGoogle Scholar
  52. Lore J, Aydin A, Goodson K (2001) A deterministic methodology for prediction of fracture distribution in basaltic multiflows. J Geophys Res 106(B4):6447–6459CrossRefGoogle Scholar
  53. Mallett R (1875) On the origin and mechanism of production of the prismatic (or columnar) structure of basalt. Proc Roy Soc London 23:180–184Google Scholar
  54. Martin U, Németh K (2004) Mio/Pliocene phreatomagmatic volcanism in the Western Pannonian Basin. Geologica Hungarica Series Geologica 26, Budapest, 1–193, ISBN 963 671 238 7Google Scholar
  55. Martin U, Németh K (2007) Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary. J Volcanol Geotherm Res 159:164–178. doi: 10.1016/j.jvolgeores.2006.06.010 CrossRefGoogle Scholar
  56. Martin U, Németh K, Auer A, Breitkreuz Ch, Csillag G (2002) Depositional record of a Pliocene nested multivent maar complex at Fekete hegy, Pannonian Basin, western Hungary. Geologica Carpathica 53: Proceedings of XVII. Congress of Carpathian–Balkan Geological Association, Bratislava, Sept. 1–4th, 2002Google Scholar
  57. Maurizot-Blanc C (1974) Etude des formations volcaniques de la cuvette de Murat et de la vallée de la Chevade. Etude pétrographique et pétrochimique des basaltes miocènes et pliocènes de la planèze de Saint-Flour (Cantal). Ph.D. thesis, University of Grenoble, Grenoble, 1–211 (in French)Google Scholar
  58. Mergoil J, Boivin P (1993) Le Velay. Son volcanisme et les formations associées. Notice de la carte à 1/100 000. Géologie de la France 3:3–96 (in French)Google Scholar
  59. Michon L, Merle O (2001) The evolution of the Massif Central rift: spatio-temporal distribution of the volcanism. Bull Soc Géol France 172:201–211CrossRefGoogle Scholar
  60. Mossand P (1983) Le volcanisme anté- et syn-caldeira des Monts-Dore (Massif Central Français). Implications géothermiques. Ph.D. thesis, University Blaise Pascal, Clermont-Ferrand, 1–197 (in French)Google Scholar
  61. Müller G (1998) Starch columns: analog model for basalt columns. J Geophys Res 103:15239–15253CrossRefGoogle Scholar
  62. Murase T, McBirney AR (1973) Properties of some common igneous rocks and their melts at high temperatures. Geol Soc Am Bull 84:3563–3592CrossRefGoogle Scholar
  63. Mysen BO (1988) Structure and properties of silicate melts. Developments in geochemistry 4. Elsevier, Amsterdam, pp 1–368Google Scholar
  64. Nemeth K, Martin U (1998) Groundwater and gas rich magma controlled phreatomagmatic (maar/diatreme) volcanism in the Balaton Highland Volcanic Field, Pannonian Basin, Hungary. IAVCEI 98 Congress, Cape Town, Abstract book p. 43Google Scholar
  65. Németh K, Martin U (2007) Shallow sill and dyke complex in western Hungary as a possible feeding system of phreatomagmatic volcanoes in “soft-rock” environment. J Volcanol Geotherm Res 159:138–152. doi: 10.1016/j.jvolgeores.2006.06.014 CrossRefGoogle Scholar
  66. O’Reilly JP (1879) Explanatory notes and discussion on the nature of the prismatic forms of a group of columnar basalts, Giant’s Causeway. Trans R Irish Acad 26:641–728Google Scholar
  67. Peck DL, Minakami T (1968) The formation of columnar joints in the upper part of Kilauean lava lakes. Hawaii Geol Soc Am Bull 79:1151–1166CrossRefGoogle Scholar
  68. Prakfalvi P (2002) A béri hajlott andezitoszlopok. (The bent andesite columns of Bér.) Polár Stúdió, Salgótarján, 1–20 (in Hungarian)Google Scholar
  69. Raspe RE (1776) An account of some German volcanos, and their productions. With a new hypothesis of the prismatic basaltes; established upon facts. Being an essay of physical geography for philosophers and miners. Published as supplementary to Sir William Hamilton’s observations on the Italian volcanos. Lockyer Davis, London, pp 1–140Google Scholar
  70. Ryan MP, Sammis CG (1978) Cyclic fracture mechanisms in cooling basalt. Geol Soc Am Bull 89:1295–1308CrossRefGoogle Scholar
  71. Ryan MP, Sammis CG (1981) The glass transition in basalt. J Geophys Res 86:9519–9535CrossRefGoogle Scholar
  72. Saemundsson K (1970) Interglacial lava flows in the lowlands of Southern Iceland and the problem of two-tiered columnar jointing. Jökull 20:62–77Google Scholar
  73. Saemundsson K (1986) Subaerial volcanism in the western N. Atlantic. In: Vogt PR, Tucholke BE (eds) The geology of North America, vol. M: the western N. Atlantic region. Geological Society of America, Boulder, pp 69–86Google Scholar
  74. Schmincke HU (2004) Volcanism. Springer, Heidelberg, pp 1–324CrossRefGoogle Scholar
  75. Schultz RA (1995) Limits on strength and deformation properties of jointed basaltic rock masses. Rock Mech Rock Engng 28:1–15CrossRefGoogle Scholar
  76. Sigmarsson O (2007) Origin of Icelandic basalts: a review of their petrology and geochemistry. J Geodynamics 43:87–100CrossRefGoogle Scholar
  77. Sigvaldason GE (1974) Basalts from the centre of the assumed Icelandic mantle plume. J Petrol 15:497–524Google Scholar
  78. Sosman RB (1916) Types of prismatic structures in igneous rocks. J Geol 24:215–234CrossRefGoogle Scholar
  79. Spörli KB, Rowland JV (2006) ‘Column on column’ structures as indicators of lava/ice interaction, Ruapehu andesite volcano, New Zealand. J Volcanol Geotherm Res 157:294–310. doi: 10.1016/j.jvolgeores.2006.04.004 CrossRefGoogle Scholar
  80. Spry AH (1962) The origin of columnar jointing, particularly in basalt flows. J Geol Soc Aust 8:191–216CrossRefGoogle Scholar
  81. Spry AH, Solomon M (1964) Columnar buchites at Apsley, Tasmania. Quart J Geol Soc 120:519–544. doi: 10.1144/gsjgs.120.1.0519 CrossRefGoogle Scholar
  82. Tardy J, Barczi A, Brezsnyánszky K, Császár G, Eszterhás I, Harangi Sz, Hámor G, Izsó I, Kordos L, Prakfalvi P, Szarvas I (2009) Novohrad-Nográd Geopark, Geology I. Enclosure to the application dossier for nomination as a European Geopark. http://ipolytarnoc.kvvm.hu/uploads/File/pdf/NNG_Enclosure_5.pdf. Cited on 21 Sep 2009
  83. Thorarinsson S (1981) Miscellanea from excursions through south Iceland. Jökull 31:65–81 (in Icelandic)Google Scholar
  84. Tomkeieff SI (1940) The basalt lavas of the Giant’s Causeway district of Northern Ireland. Bull Volcanol 6:89–146CrossRefGoogle Scholar
  85. Toramaru A, Matsumoto T (2004) Columnar joint morphology and cooling rate: a starch–water mixture experiment. J Geophys Res 109:B02205. doi: 10.1029/2003JB002686 CrossRefGoogle Scholar
  86. Turcotte DL, Schubert G (2002) Geodynamics, 2nd edn. Cambridge Univ. Press, Cambridge, pp 1–456Google Scholar
  87. Varet J (1967) Les trachytes et les phonolites du Cantal Septentrional. Ph.D. thesis, Université de Paris, Faculté des Sciences d’Orsay, Orsay, 1–195 (in French)Google Scholar
  88. Varet J (1971) Structure et mise an place des massifs phonolitiques du Cantal (Auvergne, France). Geol Rundschau 60(3):948–970CrossRefGoogle Scholar
  89. Varet J (1975) A propos des phonolites de Bort (Corrèze). Compte Rendu Somm Soc Géol France 17–4:99–101 (in French)Google Scholar
  90. Vink GE (1984) A hotspot model for Iceland and the Voring Plateau. J Geophys Res B 89:9949–9959CrossRefGoogle Scholar
  91. Walker GPL (1967) Thickness and viscosity of Etnean lavas. Nature 213:484–485CrossRefGoogle Scholar
  92. Walker GPL (1973) Lengths of lava flows. Phil Trans R Soc Lond A 274:107–118CrossRefGoogle Scholar
  93. Wijbrans J, Németh K, Martin U, Balogh K (2007) 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. J Volcanol Geotherm Res 164:193–204. doi: 10.1016/j.jvolgeores.2007.05.009 CrossRefGoogle Scholar
  94. Woodworth JB (1896) On the fracture system of joints, with remarks on certain great fractures. Proc Boston Soc Nat Hist 27:163–184Google Scholar
  95. Zarzycki J (1982) Les verres et l’état vitreux. Masson, Paris, pp 1–391 (in French)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • György Hetényi
    • 1
    Email author
  • Benoît Taisne
    • 2
  • Fanny Garel
    • 2
  • Étienne Médard
    • 3
    • 4
    • 5
  • Sonja Bosshard
    • 1
  • Hannes B. Mattsson
    • 1
  1. 1.Department of Earth SciencesETH ZürichZurichSwitzerland
  2. 2.Institut de Physique du Globe de Paris, Sorbonne Paris CitéUniversité Paris Diderot, CNRS UMR 7154Paris cedex 5France
  3. 3.Laboratoire Magma et VolcansClermont Université, Université Blaise PascalClermont-FerrandFrance
  4. 4.CNRS, UMR 6524, LMVClermont-FerrandFrance
  5. 5.IRD, R 163, LMVClermont-FerrandFrance

Personalised recommendations