Bulletin of Volcanology

, Volume 74, Issue 2, pp 497–510 | Cite as

Probability hazard map for future vent opening at the Campi Flegrei caldera, Italy

  • Jacopo SelvaEmail author
  • Giovanni Orsi
  • Mauro Antonio Di Vito
  • Warner Marzocchi
  • Laura Sandri
Research Article


The Campi Flegrei caldera is a restless structure affected by general subsidence and ongoing resurgence of its central part. The persistent activity of the system and the explosive character of the volcanism lead to a very high volcanic hazard that, combined with intense urbanization, corresponds to a very high volcanic risk. One of the largest sources of uncertainty in volcanic hazard/risk assessment for Campi Flegrei is the spatial location of the future volcanic activity. This paper presents and discusses a long-term probability hazard map for vent opening in case of renewal of volcanism at the Campi Flegrei caldera, which shows the spatial conditional probability for the next vent opening, given that an eruption occurs. The map has been constructed by building a Bayesian inference scheme merging prior information and past data. The method allows both aleatory and epistemic uncertainties to be evaluated. The probability map of vent opening shows that two areas of relatively high probability are present within the active portion of the caldera, with a probability approximately doubled with respect to the rest of the caldera. The map has an immediate use in evaluating the areas of the caldera prone to the highest volcanic hazard. Furthermore, it represents an important ingredient in addressing the more general problem of quantitative volcanic hazards assessment at the Campi Flegrei caldera.


Volcanic hazards assessment Campi Flegrei Vent opening probability map Bayesian inference 



The authors warmly thank M. Quaglino for helping in a first elaboration of the maps, S. Buononato for elaboration of a digital version of the structural map, and E. Bellucci Sessa of the Laboratory of Geomatics and Cartography of the INGV-OV for elaboration of the CFc DTM. The research has been carried out in the framework of the DPC-INGV projects on Campi Flegrei.

Supplementary material

445_2011_528_MOESM1_ESM.xls (170 kb)
Table 1 Best guess value (average), and confidence interval (10th, 50th and 90th percentiles), of the conditional probability of vent opening at Campi Flegrei at each SA, for the prior model (columns 2 to 5), the posterior model (columns 6 to 9) and the filtered posterior model (columns 10 to 13). (XLS 169 kb)


  1. Alberico I, Lirer L, Petrosino P, Scandone R (2002) A methodology for the evaluation of long-term volcanic risk from pyroclastic flows in Campi Flegrei (Italy). J Volcanol Geotherm Res 116:63–78CrossRefGoogle Scholar
  2. Arienzo I, Moretti R, Civetta L, Orsi G, Papale P (2010) The feeding system of Agnano-Monte Spina eruption (Campi Flegrei caldera, Italy): dragging the past into present activity and future scenarios. Chem Geol 270:135–147. doi: 10.1016/j.chemgeo.2009.11.012 CrossRefGoogle Scholar
  3. Banks GN, Tilling RI, Harlow DH, Ewert JW (1989) Volcano monitoring and short-term forecasts. In: Tilling RI (ed) Volcanic hazards: short course in geology, vol 1. AGU, Washington, pp 51–80Google Scholar
  4. Barberi F, Corrado G, Innocenti F, Luongo G (1984) Phlegraean Fields 1982–1984: brief chronicle of a volcano emergency in a densely populated area. Bull Volcanol 47(2):175–185CrossRefGoogle Scholar
  5. Bebbington MS, Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bull Volcanol 73:55–72. doi: 10.1007/s00445-010-0403-6 CrossRefGoogle Scholar
  6. Blong RJ (1984) Volcanic hazards: a sourcebook of the effects of eruptions. Academic, Sydney, p 424Google Scholar
  7. Bruno PPG (2004) Structure and evolution of the Bay of Pozzuoli (Italy) using marine seismic data: implications for collapse of the Campi Flegrei caldera. Bull Volcanol 66(4):342–363. doi: 10.1016/s0040-1951(03)00327-5 CrossRefGoogle Scholar
  8. Casertano L, Oliveri A, Quagliariello MT (1977) Hydrodynamics and Geodynamics in the Phlegraean Fields area of Italy. Nature 264:161–164CrossRefGoogle Scholar
  9. Cinque A, Rolandi G, Zamparelli V (1984) L’estensione dei depositi marini Olocenici nei Campi Flegrei in relazione alla vulcano-tettonica. Boll Soc Geol It 104:327–348Google Scholar
  10. Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75:183–219CrossRefGoogle Scholar
  11. Chester DK, Degg M, Duncan AM, Guest JE (2001) The increasing exposure of cities to the effects of volcanic eruptions: a global survey. Environ Haz 2:89–103Google Scholar
  12. Connor CB, Hill BE (1995) Nonhomogeneous Poisson models for the probability of basaltic volcanism—application to the Yucca Mountain region, Nevada. J Geophys Res 100(B6):10107–10125CrossRefGoogle Scholar
  13. Connor CB, Stamatakos JA, Ferrill DA, Hill BE, Ofoegbu GI, Conway FM, Sagar B, Trapp J (2000) Geologic factors controlling patterns of small-volume basaltic volcanism: application to a volcanic hazards assessment at Yucca Mountain, Nevada. J Geophys Res 105(B1):417–432CrossRefGoogle Scholar
  14. Costa A, Dell’Erba F, Di Vito M, Isaia R, Macedonio G, Orsi G, Pfeiffer T (2009) Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bull Volcanol 71(3):259–273. doi: 10.107/s00445-008-0220-3 CrossRefGoogle Scholar
  15. Crandell DR, Booth B, Kusumadinata D, Shimozuru D, Walker GPL, Westerdamp D (1984) Source book for volcanic-hazards zonation. UNESCO, Paris, p 97Google Scholar
  16. Crescentini L, Amoruso A (2007) Effects of crustal layering on the inversion of deformation and gravity data in volcanic areas: an application to the Campi Flegrei caldera, Italy. Geophys Res Let 34:L09303. doi: 10.1029/2007GL029919 CrossRefGoogle Scholar
  17. D’Oriano C, Poggianti E, Bertagnini A, Cioni R, Landi P, Polacci M, Rosi M (2005) Changes in eruptive style during the A.D. 1538 Monte Nuovo eruption (Phlegrean Fields, Italy): the role of syn-eruptive crystallization. Bull Volcanol 67:601–621CrossRefGoogle Scholar
  18. Del Gaudio C, Aquino I, Ricco C, Serio C (2009) Monitoraggio geodetico dell’area vulcanica napoletana: risultati della livellazione geometrica di precisione eseguita ai Campi Flegrei a settembre 2008. Quaderni di Geofisica 66:14Google Scholar
  19. De Pippo T, Di Cara A, Guida M, Pescatore T, Renda P (1984) Contributi allo studio del golfo di Pozzuoli:lineamenti di geomorfologia. Mem Soc Geol It 27:151–159Google Scholar
  20. de Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Di Cesare T, Di Vito M, Fisher RV, Isaia R, Marotta E, Ort M, Pappalardo L, Southon J (1999) The Agnano-Monte Spina eruption in the densely populated, restless Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91(2–4):269–301CrossRefGoogle Scholar
  21. De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic plain (Italy). Mineral Petrol 73:47–65CrossRefGoogle Scholar
  22. Deino AL, Orsi G, Piochi M, de Vita S (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera - Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–160. doi: 10.1016/S0377-0273(03)00396-2 CrossRefGoogle Scholar
  23. Di Vito MA, Isaia R, Orsi G, Southon J, de Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation in the past 12 ka at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91(2–4):221–246CrossRefGoogle Scholar
  24. Di Vito MA, Arienzo I, Braia G, Civetta L, D’Antonio M, Di Renzo V, Orsi G (2011) The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei caldera (Italy). Bull Volcanol 73:295–320. doi: 10.1007/s00445-010-0417-0 CrossRefGoogle Scholar
  25. Fedele FG, Giaccio B, Isaia R, Orsi G, Carroll M, Scaillet B (2007) The Campanian ignimbrite factor: towards a reappraisal of the Middle to Upper Palaeolithic “transition”. In: Torrence R, Grattan J (eds) Living under the shadow: the cultural impacts of volcanic eruptions, vol 53, One World Archaeology Series. Left Coast Press, Walnutt Creek, pp 19–41Google Scholar
  26. Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of a large-volume pyroclastic flow. Emplacement of the Campanian Ignimbrite, Italy. J Volcanol Geotherm Res 56:205–220CrossRefGoogle Scholar
  27. Fournier d’Albe EM (1979) Objectives of volcanic monitoring and prediction. J Geol Soc London 54:57–67Google Scholar
  28. Gelman A, Carlin JB, Stern HS, Rubin DB (1995) Bayesian data analysis. CRC Press, Boca RatonGoogle Scholar
  29. Heiken G, Fakundiny R, Sutter J (eds) (2003) Earth sciences in the cities: a reader. AGU Sp. Publ. Series 56. pp. 444Google Scholar
  30. Isaia R, D’Antonio M, Dell’Erba F, Di Vito M, Orsi G (2004) The Astroni volcano: the only example of close eruptions within the same vent area in the recent history of the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 133(1–4):171–192CrossRefGoogle Scholar
  31. Judenherc J, Zollo A (2004) The Bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey. J Geophys Res 109:B10312. doi: 10.1029/2003JB002876 CrossRefGoogle Scholar
  32. Lindsay J, Marzocchi W, Jolly G, Constantinescu R, Selva J, Sandri L (2010) Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand national disaster exercise 'Ruaumoko'. Bull Volcanol 72:185–204. doi: 10.1007/s00445-009-0311-9 CrossRefGoogle Scholar
  33. Magill CR, McAneney KJ, Smith IEM (2005) Probabilistic assessment of vent locations for the next Auckland Volcanic Field event. Math Geol 37:227–242CrossRefGoogle Scholar
  34. Marti J, Folch A (2005) Anticipating volcanic eruptions. In: Marti J, Ernst GGJ (eds) Volcanoes and the Environment. Cambridge University Press, Cambridge, pp 90–120CrossRefGoogle Scholar
  35. Martin AJ, Umeda K, Connor CB, Weller JN, Zhao DP, Takahashi M (2004) Modeling long-term volcanic hazards through Bayesian inference: An example from the Tohoku volcanic arc, Japan. J Geophys Res 109:B10208. doi: 10.1029/2004JB00320 CrossRefGoogle Scholar
  36. Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mt. Vesuvius. J Geophys Res 109:B11201. doi: 10.1029/2004JB003155 CrossRefGoogle Scholar
  37. Marzocchi W, Sandri L, Furlan C (2006) A quantitative model for volcanic hazard assessment. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology. IAVCEI Publications, London, pp 31–37. ISBN 978-1-86239-208-3Google Scholar
  38. Marzocchi W, Neri A, Newhall CG, Papale P (2007) Probabilistic volcanic hazard and risk assessment. EOS Tran AGU 88(32):318CrossRefGoogle Scholar
  39. Marzocchi W, Sandri L, Selva J (2008) BET_EF: a probabilistic tool for long- and short-term eruption forecasting. Bull Volcanol 70:623–632. doi: 10.1007/s00445-007-0157-y CrossRefGoogle Scholar
  40. Marzocchi W, Sandri L, Selva J (2010) BET_VH: a probabilistic tool for long-term volcanic hazard assessment. Bull Volcanol 72:705–716. doi: 10.1007/s00445-010-0357-8 CrossRefGoogle Scholar
  41. Marzocchi W, Woo G (2007) Probabilistic eruption forecasting and the call for an evacuation. Geophys Res Lett 34:L22310. doi: 10.1029/2007GL031922 CrossRefGoogle Scholar
  42. Marzocchi W, Woo G (2009) Principle of Volcanic Risk Metrics: theory and the case study of Mt. Vesuvius and Campi Flegrei (Italy). J Geophys Res 114:B3. doi: 10.1029/2008JB005908 Google Scholar
  43. Mosimann JE (1962) On the compound multinomial distribution, the multivariate fl-distribution and correlation among proportions. Biometrika 49:65–82Google Scholar
  44. Newhall CG, Dzurisin D (1988) Historical unrest at large calderas of the world. USGS Bull 1855, Washington.Google Scholar
  45. Newhall CG, Hoblitt RP (2002) Constructing event trees for volcanic crises. Bull Volcanol 64:3–20CrossRefGoogle Scholar
  46. Orsi G, Gallo G, Zanchi A (1991) Simple-shearing block resurgence in caldera depressions. A model from Pantelleria and Ischia. J Volcanol Geotherm Res 47:1–11CrossRefGoogle Scholar
  47. Orsi G, Civetta L, D'Antonio M, Di Girolamo P, Piochi M (1995) Step-filling and development of a three-layers magma chamber: the Neapolitan Yellow Tuff case history. J Volcanol Geotherm Res 67:291–312CrossRefGoogle Scholar
  48. Orsi G, de Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214CrossRefGoogle Scholar
  49. Orsi G, Civetta L, Del Gaudio C, de Vita S, Di Vito MA, Isaia R, Petrazzuoli SM, Ricciardi G, Ricco C (1999a) Short-term ground deformations and seismicity in the nested Campi Flegrei caldera (Italy): an example of active block-resurgence in a densely populated area. J Volcanol Geotherm Res 91(2–4):415–451CrossRefGoogle Scholar
  50. Orsi G, Petrazzuoli S, Wohletz K (1999b) Mechanical and thermo-fluid behaviour during unrest episode at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91(2–4):453–470CrossRefGoogle Scholar
  51. Orsi G, de Vita S, Di Vito M, Nave R, Heiken G (2003) Facing volcanic and related hazards in the Neapolitan area, In: Heiken G, Fakundiny R, Sutter J (eds) Earth Sciences in the cities: a reader. AGU Sp. Publ. Series 56. pp. 121–170Google Scholar
  52. Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530. doi: 10.1007/s00445-003-0336-4 CrossRefGoogle Scholar
  53. Orsi G, Di Vito MA, Selva J, Marzocchi W (2009) Long-term forecasting of eruption style and size at Campi Flegrei caldera (Italy). Earth Planet Sci Let 287:265–276. doi: 10.1016/j.epsl.2009.08.013 CrossRefGoogle Scholar
  54. Ort M, Orsi G, Pappalardo L, Fisher RV (2003) Emplacement processes in a far-traveled dilute pyroclastic current: anisotropy of magnetic susceptibility studies of the Campanian Ignimbrite. Bull Volcanol 65:55–72Google Scholar
  55. Parascandola A (1947) I fenomeni bradisismici del Serapeo di Pozzuoli. Genovesi, NaplesGoogle Scholar
  56. Pescatore T, Diplomatico G, Senatore MR, Tramutoli M, Mirabile L (1984) Contributi allo studio del golfo di Pozzuoli: aspetti stratigrafici e strutturali. Mem Soc Geol It 27:133–149Google Scholar
  57. Rosi M, Sbrana A (eds) (1987) Phlegraean fields. CNR Quaderni della Ricerca Scientifica 114, N 9, pp. 175Google Scholar
  58. Santacroce R, Cristofolini R, La Volpe L, Orsi G, Rosi M (2003) Italian Active Volcanoes. Episodes 26(3):227–234Google Scholar
  59. Scarpa R, Tilling RI (eds) (1996) Monitoring and mitigation of volcano hazards. Springer, Heidelberg, p 841Google Scholar
  60. Selva J, Marzocchi W, Orsi G, di Vito AM, Sandri L, Quaglino M, Costa A (2008) The Bayesian event tree for short- and long-term eruption forecasting (BET_EF) at Campi Flegrei, Italy. Abstract at CITIES ON VOLCANOES 5, Shimabara, JapanGoogle Scholar
  61. Selva J, Costa A, Marzocchi W, Sandri L (2010) BET VH: long-term hazard from tephra fallout at Campi Flegrei, Italy. Bull Volcanol 72(6):705–716. doi: 10.1007/s00445-010-0358-7 CrossRefGoogle Scholar
  62. Simkin T, Siebert L (1994) Volcanoes of the world: a regional directory, gazetteer, and chronology of volcanism during the last 10,000 years, Secondth edn. Smithsonian Institution and Geoscience Press, Inc, Tucson, p 349Google Scholar
  63. Small C, Naumann T (2001) The global distribution of human population and recent volcanism. Environmen Haz 3:93–109Google Scholar
  64. Tilling RI (1989a) Volcanic hazards and their mitigation: progress and problems. Rev Geophys 27:237–269CrossRefGoogle Scholar
  65. Tilling RI (ed) (1989b) Volcanic hazards: short course in geology, vol. 1. AGU Washington. p. 123 (A Chinese-language version is available in: Tilling RI (1990) J Seismology (Beijing, China) 3 2 39:1–46. A Spanish-language version is available in: Tilling RI (ed) (1993) Los Peligros Volcánicos. World Organization of Volcano Observatories (WOVO-IAVCEI) (Translation by Ing. Bernardo Beate, Ecuador), 125 pp)Google Scholar
  66. Tilling RI (2001) Volcano monitoring and eruption warnings. In: Zschau J, Küppers AN (eds) Early warning systems for natural disaster reduction. Springer, Berlin, pp 505–510Google Scholar
  67. Tilling RI (2005) Volcano hazards. In: Marti J, Ernst GGJ (eds) Volcanoes and the environment. Cambridge University Press, Cambridge, pp 55–89CrossRefGoogle Scholar
  68. Tilling RI, Bailey R (1985) Volcano hazards program in the United States. J Geodynamics 3:425–446CrossRefGoogle Scholar
  69. Tonarini S, D'Antonio M, Di Vito MA, Orsi G, Carandente A (2009) Geochemical and B-Sr-Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1-3.8 ka) within the Campi Flegrei caldera (southern Italy). Lithos 107:135–151CrossRefGoogle Scholar
  70. United Nations-International Strategy for Disaster Reduction (UN-ISDR) (2002) Living with Risk: a global review of disaster reduction initiatives. Available at: (
  71. United Nations-International Strategy for Disaster Reduction (UN-ISDR) (2004) Living with Risk: A global review of disaster reduction initiatives/Vivir con el Riesgo Informe mundial sobre iniciativas para la reducción de desastres; Geneva382 pp. Spanish version available at
  72. Weller JN, Martin AJ, Connor CB, Connor LJ, Karakhanian A (2006) Modelling the spatial distribution of volcanoes: an example from Armenia. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology. Special Publications of IAVCEI 1. Geological Society, London, pp 77–88Google Scholar
  73. Williams H, McBirney AR (1979) Volcanology. Freeman, Cooper. & Co, San Francisco, 397 pp. ISBN 0-87735-321-2Google Scholar
  74. Wohletz KH, Orsi G, de Vita S (1995) Eruptive mechanisms of the Neapolitan Yellow Tuff interpreted from stratigraphic, chemical and granulometric data. J Volcanol Geotherm Res 67:263–290CrossRefGoogle Scholar
  75. Woo G (2008) Probabilistic criteria for volcano evacuation decision. Nat Haz 45:87–97CrossRefGoogle Scholar
  76. Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer under Campi Flegrei volcanic field. Geophys Res Lett 35:L12306. doi: 10.1029/2008GL034242 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jacopo Selva
    • 1
    Email author
  • Giovanni Orsi
    • 2
  • Mauro Antonio Di Vito
    • 2
  • Warner Marzocchi
    • 3
  • Laura Sandri
    • 1
  1. 1.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di BolognaBolognaItaly
  2. 2.Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio VesuvianoNaplesItaly
  3. 3.Istituto Nazionale di Geofisica e Vulcanologia, Roma 1RomeItaly

Personalised recommendations