Bulletin of Volcanology

, Volume 74, Issue 1, pp 187–205 | Cite as

Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador)

  • Julia EychenneEmail author
  • Jean-Luc Le Pennec
  • Liliana Troncoso
  • Mathieu Gouhier
  • Jean-Marie Nedelec
Research Article


The violent August 16–17, 2006 Tungurahua eruption in Ecuador witnessed the emplacement of numerous scoria flows and the deposition of a widespread tephra layer west of the volcano. We assess the size of the eruption by determining a bulk tephra volume in the range 42–57 × 106 m3, which supports a Volcanic Explosivity Index 3 event, consistent with calculated column height of 16–18 km above the vent and making it the strongest eruptive phase since the volcano’s magmatic reactivation in 1999. Isopachs west of the volcano are sub-bilobate in shape, while sieve and laser diffraction grain-size analyses of tephra samples reveal strongly bimodal distributions. Based on a new grain-size deconvolution algorithm and extended sampling area, we propose here a mechanism to account for the bimodal grain-size distribution. The deconvolution procedure allows us to identify two particle subpopulations in the deposit with distinct characteristics that indicate dissimilar transport-depositional processes. The log-normal coarse-grained subpopulation is typical of particles transported downwind by the main volcanic plume. The positively skewed, fine-grained subpopulation in the tephra fall layer shares close similarities with the elutriated co-pyroclastic flow ash cloud layers preserved on top of the scoria flow deposits. The area with the higher fine particle content in the tephra layer coincides with the downwind prolongation of the pyroclastic flow deposits. These results indicate that the bimodal distribution of grain size in the Tungurahua fall deposit results from synchronous deposition of lapilli from the main plume and fine ash elutriated from scoria flows emplaced on the western flank of the volcano. Our study also reveals that inappropriate grain-size data processing may produce misleading determination of eruptive type.


Tephra fall Bimodal grain size Volcanic Explosivity Index Eruption type Tungurahua volcano 



This work is part of a PhD project by JE and has been completed in the context of a French-Ecuadorian cooperation program. Discussions with P Ramon, P Samaniego, H Yepes, C Robin, K Kelfoun, P Hall, P Mothes and many other individuals in the Tungurahua region improved our understanding of the August 2006 event. Reviews of the manuscript by RJ Carey and D Andronico and editorial handling by R Cioni and J White are warmly acknowledged.

Supplementary material

445_2011_517_MOESM1_ESM.docx (37 kb)
Table S1 Thickness measurements and samples collected in the PFall layer. Projected coordinates system: PSAD_1956_UTM_Zone 17S (DOC 36.7 KB)


  1. Arana-Salinas L, Siebe C, Macías JL (2010) Dynamics of the ca. 4965 yr 14 C BP "Ochre Pumice" Plinian eruption of Popocatépetl volcano, México. J Volcanol Geotherm Res 192:212–231CrossRefGoogle Scholar
  2. Arellano S, Hall M, Samaniego P, Le Pennec J-L, Ruiz A, Molina I, Yepes H (2008) Degassing patterns of Tungurahua volcano (Ecuador) during the 1999–2006 eruptive period, inferred from remote spectroscopic measurements of SO2 emissions. J Volcanol Geotherm Res 176:151–162CrossRefGoogle Scholar
  3. Arrighi S, Principe C, Rosi M (2001) Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity. Bull Volcanol 63:126–150CrossRefGoogle Scholar
  4. Barberi F, Coltelli M, Ferrara G, Innocenti F, Navarro JM, Santacroce R (1988) Plio-Quaternary volcanism in Ecuador. Geol Mag 125:1–14CrossRefGoogle Scholar
  5. Biass S, Bonadonna C (2010) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73:73–90CrossRefGoogle Scholar
  6. Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–187CrossRefGoogle Scholar
  7. Bonadonna C, Mayberry GC, Calder ES, Sparks RSJ, Choux C, Jackson P, Lejeune AM, Loughlin SC, Norton GE, Rose WI, Ryan G, Young SR (2002) Tephra fallout in the eruption of Soufriere Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, pp 483–516, 21Google Scholar
  8. Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456CrossRefGoogle Scholar
  9. Brazier S, Sparks RSJ, Carey SN, Sigurdsson H, Westgate JA (1983) Bimodal grain size distribution and secondary thickening in air-fall ash layers. Nature 301:115–119CrossRefGoogle Scholar
  10. Carey RJ, Houghton BF, Thordarson T (2009) Tephra dispersal and eruption dynamics of wet and dry phases of the 1875 eruption of Askja Volcano, Iceland. Bull Volcanol 72:259–278CrossRefGoogle Scholar
  11. Carey RJ, Houghton BF (2010) "Inheritance": An influence on the particle size of pyroclastic deposits. Geology 38:347–350CrossRefGoogle Scholar
  12. Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125CrossRefGoogle Scholar
  13. Costantini L, Bonadonna C, Houghton B, Wehrmann H (2009) New physical characterization of the Fontana Lapilli basaltic Plinian eruption, Nicaragua. Bull Volcanol 71:337–355CrossRefGoogle Scholar
  14. Dartevelle S, Ernst GGJ, Stix J, Bernard A (2002) Origin of the Mount Pinatubo climactic eruption cloud: Implications for volcanic hazards and atmospheric impacts. Geology 30:663–666CrossRefGoogle Scholar
  15. Ernst GGJ, Davis JP, Sparks RSJ (1994) Bifurcation of volcanic plumes in a crosswind. Bull Volcanol 56:159–169CrossRefGoogle Scholar
  16. Evans JR, Huntoon JE, Rose WI, Varley NR, Stevenson JA (2009) Particle sizes of andesitic ash fallout from vertical eruptions and co-pyroclastic flow clouds, Volcan de Colima, Mexico. Geology 37:935–938CrossRefGoogle Scholar
  17. Fee D, Garces M, Steffke A (2010) Infrasound from Tungurahua Volcano 2006–2008: Strombolian to Plinian eruptive activity. J Volcanol Geotherm Res 193:67–81CrossRefGoogle Scholar
  18. Fisher R (1964) Maximum Size, Median Diameter, and Sorting of Tephra. J Geophys Res 69:341–355CrossRefGoogle Scholar
  19. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167CrossRefGoogle Scholar
  20. Fierstein J, Houghton BF, Wilson CJN, Hildreth W (1997) Complexities of plinian fall deposition at vent: an example from the 1912 Novarupta eruption (Alaska). J Volcanol Geotherm Res 76:215–227CrossRefGoogle Scholar
  21. Freundt A, Schmincke H (1992) Abrasion in pyroclastic flows. Geol Rundsch 81:383–389CrossRefGoogle Scholar
  22. Freundt A, Wilson CJN, Carey SN (2000) Ignimbrites and block-and-ash flow deposits. In: Sigurdsson H (ed) Encyclopedia of Volcanoes. Academic Press, New York, pp 581–599Google Scholar
  23. Gouhier M, Donnadieu F (2008) Mass estimations of ejecta from Strombolian explosions by inversion of Doppler radar measurements. J Geophys Res 113:B10202CrossRefGoogle Scholar
  24. Hall M, Robin C, Beate B, Mothes P, Monzier M (1999) Tungurahua Volcano, Ecuador: structure, eruptive history and hazards. J Volcanol Geotherm Res 91:1–21CrossRefGoogle Scholar
  25. Hall M, Mothes P, Ramon P, Arellano S, Barba D, Palacios P (2007) Dense pyroclastic flows of the 16–17 august 2006 Eruption of Tungurahua Volcano, Ecuador. AGU Joint Assembly, Acapulco, MexicoGoogle Scholar
  26. Houghton BF, Wilson CJN, Pyle DM (2000) Pyroclastic Fall Deposits. In: Sigurdsson H (ed) Encyclopedia of Volcanoes. Academic Press, New York, pp 555–570Google Scholar
  27. Houghton BF, Wilson CJN, Fierstein J, Hildreth W (2004) Complex proximal deposition during the Plinian eruptions of 1912 at Novarupta, Alaska. Bull Volcanol 66:95–133CrossRefGoogle Scholar
  28. Inman DL (1952) Measures for decribing the size distribution of sediments. J Sediment Res 22:125–145Google Scholar
  29. Kelfoun K, Samaniego P, Palacios P, Barba D (2009) Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador). Bull Volcanol 71:1057–1075CrossRefGoogle Scholar
  30. Le Pennec J-L, Hall ML, Robin C, Bartomioli E (2006) Tungurahua volcano - Late Holocene activity. Field Guide A1. IAVCEI (Editor), Fourth International Conference "Cities on Volcanoes", Quito, EcuadorGoogle Scholar
  31. Le Pennec J-L, Jaya D, Samaniego P, Ramón P, Moreno Yánez S, Egred J, Van der Plicht J (2008) The AD 1300–1700 eruptive periods at Tungurahua volcano, Ecuador, revealed by historical narratives, stratigraphy and radiocarbon dating. J Volcanol Geotherm Res 176:70–81CrossRefGoogle Scholar
  32. Molina I, Kumagai H, Le Pennec J-L, Hall M (2005) Three-dimensional P-wave velocity structure of Tungurahua Volcano, Ecuador. J Volcanol Geotherm Res 147:144–156CrossRefGoogle Scholar
  33. Moore JG, Melson WG (1969) Nuées Ardentes of the 1968 Eruption of Mayon Volcano, Philippines. Bull Volcanol 33:600–620CrossRefGoogle Scholar
  34. Morrissey MM, Mastin LG (2000) Vulcanian eruptions. In: Sigurdsson H (ed) Encyclopedia of Volcanoes. Academic Press, New York, pp 463–475Google Scholar
  35. Newhall CG, Self S (1982) Volcanic Explosivity Index (VEI): An estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238CrossRefGoogle Scholar
  36. Pioli L, Erlund E, Johnson E, Cashman K, Wallace P, Rosi M, Granados HD (2008) Explosive dynamics of violent Strombolian eruptions: The eruption of Parícutin Volcano 1943–1952 (Mexico). Earth Planet Scien Let 271:359–368CrossRefGoogle Scholar
  37. Pyle DM (1989) The thickness, volume and grain-size of tephra fall deposits. Bull Volcanol 51:1–15CrossRefGoogle Scholar
  38. Rose WI, Bonis S, Stoiber R, Keller M, Bickford T (1973) Studies of volcanic ash from two recent Central American eruptions. Bull Volcanol 37:338–364CrossRefGoogle Scholar
  39. Rose WI (1993) Comment on 'another look at the calculation of fallout tephra volumes' by Judy Fierstein and Manuel Nathenson. Bull Volcanol 55:372–374CrossRefGoogle Scholar
  40. Rose WI, Self S, Murrow P, Bonadonna C, Durant A, Ernst GGJ (2008) Nature and significance of small volume fall deposits at composite volcanoes: Insights from the October 14, 1974 Fuego eruption, Guatemala. Bull Volcanol 70:1043–1067CrossRefGoogle Scholar
  41. Rose WI, Durant AJ (2009) Fine ash content of explosive eruptions. J Volcanol Geotherm Res 186:32–39CrossRefGoogle Scholar
  42. Samaniego P, Le Pennec J-L, Robin C, Hidalgo S (2011) Petrological analysis of the pre-eruptive magmatic process prior to the 2006 explosive eruptions at Tungurahua. J Volcanol Geotherm Res 199:69–84CrossRefGoogle Scholar
  43. Scott WE, McGimsey RG (1994) Character, mass, distribution, and origin of tephra-fall deposits of the 1989–1990 eruption of redoubt volcano, south-central Alaska. J Volcanol Geotherm Res 62:251–272CrossRefGoogle Scholar
  44. Sparks RSJ, Self S, Walker GPL (1973) Products of Ignimbrite Eruptions. Geology 1:115–118CrossRefGoogle Scholar
  45. Steffke AM, Fee D, Garces M, Harris A (2010) Eruption chronologies, plume heights and eruption styles at Tungurahua Volcano: Integrating remote sensing techniques and infrasound. J Volcanol Geotherm Res 193:143–160CrossRefGoogle Scholar
  46. Stix J, Torres R, Narváez M, Cortés G, Raigosa J, Gómez D, Castonguay R (1997) A model of vulcanian eruptions at Galeras volcano, Colombia. J Volcanol Geotherm Res 77:285–303CrossRefGoogle Scholar
  47. Sulpizio R (2005) Three empirical methods for the calculation of distal volume of tephra-fall deposits. J Volcanol Geotherm Res 145:315–336CrossRefGoogle Scholar
  48. Taylor PS (1969) Soluble material on volcanic ash. Unpublished MA Thesis, Dartmouth College, Hanover, N. HGoogle Scholar
  49. Walker GPL (1971) Grain-size characteristics of pyroclastic deposits. J Geol 79:696–714CrossRefGoogle Scholar
  50. Walker GPL (1973) Explosive volcanic eruptions — a new classification scheme. Geol Rundsch 62:431–446CrossRefGoogle Scholar
  51. Walker GPL (1981a) Characteristics of two phreatoplinian ashes, and their water-flushed origin. J Volcanol Geotherm Res 9:395–407CrossRefGoogle Scholar
  52. Walker GPL (1981b) Generation and dispersal of fine ash and dust by volcanic eruptions. J Volcanol Geotherm Res 11:81–92CrossRefGoogle Scholar
  53. Watt SFL, Pyle DM, Mather TA, Martin RS, Matthews NE (2009) Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaitén, Chile. J Geophys Res 114:B04207CrossRefGoogle Scholar
  54. Wohletz KH, Sheridan MF, Brown WK (1989) Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash. J Geophys Res 94:15703–15721CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Julia Eychenne
    • 1
    • 2
    • 3
    Email author
  • Jean-Luc Le Pennec
    • 1
    • 2
    • 3
  • Liliana Troncoso
    • 4
  • Mathieu Gouhier
    • 1
    • 2
    • 3
  • Jean-Marie Nedelec
    • 5
    • 6
  1. 1.Laboratoire Magmas et VolcansClermont Université, Université Blaise PascalClermont-FerrandFrance
  2. 2.CNRS, UMR 6524Laboratoire Magmas et VolcansClermont-Ferrand cedexFrance
  3. 3.IRD, R 163Laboratoire Magmas et VolcansClermont-Ferrand cedexFrance
  4. 4.Instituto GeofísicoEscuela Politécnica NacionalQuitoEcuador
  5. 5.ENSCCF, LMIClermont UniversitéAubièreFrance
  6. 6.CNRS, UMR 6002AubièreFrance

Personalised recommendations