Bulletin of Volcanology

, Volume 74, Issue 1, pp 107–117

Lava channel roofing, overflows, breaches and switching: insights from the 2008–2009 eruption of Mt. Etna

  • Mike R. James
  • L. Jane Applegarth
  • Harry Pinkerton
Research Article


During long-lived basaltic eruptions, overflows from lava channels and breaching of channel levées are important processes in the development of extensive 'a'ā lava flow-fields. Short-lived breaches result in inundation of areas adjacent to the main channel. However, if a breach remains open, lava supply to the original flow front is significantly reduced, and flow-field widening is favoured over lengthening. The development of channel breaches and overflows can therefore exert strong control over the overall flow-field development, but the processes that determine their location and frequency are currently poorly understood. During the final month of the 2008–2009 eruption of Mt. Etna, Sicily, a remote time-lapse camera was deployed to monitor events in a proximal region of a small ephemeral lava flow. For over a period of ~10 h, the flow underwent changes in surface elevation and velocity, repeated overflows of varying vigour and the construction of a channel roof (a required prelude to lava tube formation). Quantitative interpretation of the image sequence was facilitated by a 3D model of the scene constructed using structure-from-motion computer vision techniques. As surface activity waned during the roofing process, overflow sites retreated up the flow towards the vent, and eventually, a new flow was initiated. Our observations and measurements indicate that flow surface stagnation and flow inflation propagated up-flow at an effective rate of ~6 m h−1, and that these processes, rather than effusion rate variations, were ultimately responsible for the most vigorous overflow events. We discuss evidence for similar controls during levée breaching and channel switching events on much larger flows on Etna, such as during the 2001 eruption.


Basalt Lava channel Lava flow field Overflows Levée breach Mt. Etna Lava tube 

Supplementary material

445_2011_513_MOESM1_ESM.mp4 (36.7 mb)
Online Resource 1A video file constructed from excerpts of the time-lapse images, covering the active lava flows. For detailed viewing, we recommend advancing frame by frame (MP4 37590 kb)
Online Resource 2

A video animation ‘fly through’ of the 3D model of the T1 and F1 area. The animation starts and ends observing the scene vertically, as shown in Fig. 1b (MP4 49547 kb)


  1. Applegarth LJ, Pinkerton H, James MR, Calvari S (2010) Morphological complexities during the emplacement of channel-fed `a`ā lava flow fields: a study of the 2001 lower flow field on Etna. Bull Volcanol. doi:10.1007/s00445-010-0351-1
  2. Bailey JE, Harris AJL, Dehn J, Calvari S, Rowland SK (2006) The changing morphology of an open lava channel on Mt. Etna. Bull Volcanol 68:497–515CrossRefGoogle Scholar
  3. Barca D, Crisci GM, Rongo R, Di Gregorio S, Spataro W (2004) Application of cellular automata model SCIARA to the 2001 Mount Etna crisis. In: Bonaccorso A, Calvari S, Coltelli M, Del Negro C, Falsaperla S (Eds.): Mt Etna Volcano Laboratory. AGU Geophys Monog Ser 143:343–356CrossRefGoogle Scholar
  4. Behncke B, Neri M (2003) The July-August 2001 eruption of Mt. Etna (Sicily). Bull Volcanol 65(7):461–476CrossRefGoogle Scholar
  5. Bonaccorso A, Bonforte A, Calvari S, Del Negro C, Di Grazia G, Ganci G, Neri M, Vicari A, Boschi E (2011) The initial phases of the 2008–2009 Mt. Etna eruption: a multi-disciplinary approach for hazard assessment. J Geophys Res 116:B03203. doi:10.1029/2010JB007906 CrossRefGoogle Scholar
  6. Brown M, Lowe DG (2005) Unsupervised 3D object recognition and reconstruction in unordered datasets. Proc Fifth Int Conf 3-D Digital Imaging and Modeling, Ottowa, Canada, pp 56–63Google Scholar
  7. Calvari S, INGV Catania staff (2001) Multidisciplinary approach yields insight into Mt. Etna 2001 eruption. EOS Trans AGU 82(52):653–656CrossRefGoogle Scholar
  8. Calvari S, Pinkerton H (1998) Formation of lava tubes and extensive flow field during the 1991–1993 eruption of Mount Etna. J Geophys Res 103(B11):27291–27301CrossRefGoogle Scholar
  9. Calvari S, Pinkerton H (1999) Lava tube morphology on Etna, and evidence for lava flow emplacement mechanisms. J Volcanol Geotherm Res 90:2633–280CrossRefGoogle Scholar
  10. Calvari S, Neri M, Pinkerton H (2003) Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J Volcanol Geotherm Res 119:107–123CrossRefGoogle Scholar
  11. Coltelli M, Proietti C, Branca S, Marsella M, Andronico D, Lodato L (2007) Analysis of the 2001 lava flow eruption of Mt. Etna from three-dimensional mapping. J Geophys Res 112:F02029. doi:10.1029/2006JF000598 CrossRefGoogle Scholar
  12. Crisci GM, Di Gregorio S, Pindaro O, Ranieri G (1986) Lava flow simulation by a discrete cellular model: first implementation. Int J Model Simul 6:137–140Google Scholar
  13. Day T, Muller J-P (1989) Digital elevation model production by stereomatching spot image-pairs: A comparison of algorithms. Image Vis Comput 7:95–101CrossRefGoogle Scholar
  14. Favalli M, Pareschi M, Neri A, Isola I (2005) Forecasting lava flow paths by a stochastic approach. Geophys Res Lett 32:L03305. doi:10.1029/2004GL021718 CrossRefGoogle Scholar
  15. Favalli M, Harris AJL, Fornaciai A, Pareschi MT, Mazzarini F (2010) The distal segment of Etna’s 2001 basaltic lava channel. Bull Volcanol 72(1):119–127. doi:10.1007/s00445-009-0300-z CrossRefGoogle Scholar
  16. Furukawa Y, Ponce J (2010) Accurate, dense, and robust multiview stereopsis. IEEE Trans Pattern Anal Mach Intell 32(8):1362–1376CrossRefGoogle Scholar
  17. Furukawa Y, Curless B, Seitz SM, Szeliski R (2010) Towards internet-scale multi-view stereo. Proc IEEE Conf. Compr Vis Patt Recog, in pressGoogle Scholar
  18. Goesele M, Snavely N, Curless B, Hoppe H, Seitz SM (2007) Multi-view stereo for community photo collections. Proc Int Conf Comp Vis. doi:10.1109/ICCV.2007.4408933
  19. Gruen AW (1985) Adaptive least squares correlation: A powerful image matching technique. S Afr J Photogramm Remote Sens Cartogr 14:175–187Google Scholar
  20. Guest JE, Kilburn CRJ, Pinkerton H, Duncan AM (1987) The evolution of lava flow fields: Observations of the 1981 and 1983 eruptions of Mount Etna, Sicily. Bull Volcanol 49:527–540CrossRefGoogle Scholar
  21. Harris AJL, Rowland SK (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63(1):20–44CrossRefGoogle Scholar
  22. Hartley R, Zisserman A (2004) Multiple view geometry in computer vision. Cambridge University Press, Cambridge, 672 ppCrossRefGoogle Scholar
  23. Hidaka M, Goto A, Umino S, Fujita E (2005) VTFS project: Development of the lava flow simulation code LavaSIM with a model for three-dimensional convection, spreading, and solidification. Geochem Geophys Geosys 6(7):Q07008. doi:10.1029/2004GC000869 CrossRefGoogle Scholar
  24. Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pāhoehoe sheet flows: Observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106:351–370CrossRefGoogle Scholar
  25. James MR, Pinkerton H, Robson S (2007) Image-based measurement of flux variation in distal regions of active lava flows. Geochem Geophys Geosys 8(3):Q03006. doi:10.1029/2006GC001448 CrossRefGoogle Scholar
  26. James MR, Pinkerton H, Applegarth LJ (2009) Detecting the development of active lava flow fields with a very-long-range terrestrial laser scanner and thermal imagery. Geophys Res Lett 36:L22305. doi:10.1029/2009GL040701 CrossRefGoogle Scholar
  27. James MR, Pinkerton H, Ripepe M (2010) Imaging short period variations in lava flux. Bull Volcanol 72(6):671–676. doi:10.1007/s00445-010-0354-y CrossRefGoogle Scholar
  28. Jurado-Chichay Z, Rowland SK (1995) Channel overflows of the Pōhue Bay flow, Mauna Loa, Hawai‘i: examples of the contrast between surface and interior lava. Bull Volcanol 57:117–126Google Scholar
  29. Kauahikaua J, Cashman K, Mattox TN, Heliker CC, Hon KA, Mangan MT, Thornber CR (1998) Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawaii. J Geophys Res 103(B11):27303–27323CrossRefGoogle Scholar
  30. Kilburn RJ, Lopez RMC (1988) The growth of aa lava flow fields on Mount Etna, Sicily. J Geophys Res 93(B12):14759–14772CrossRefGoogle Scholar
  31. MacDonald (1972) Volcanoes. Prentice-Hall, New Jersey, p 510Google Scholar
  32. Mattox TN, Heliker C, Kauahikaua J, Hon K (1993) Development of the 1990 Kalapana Flow Field, Kilauea Volcano, Hawaii. Bull Volcanol 55:407–413CrossRefGoogle Scholar
  33. Otto GP, Chau TKW (1989) Region-growing algorithm for matching of terrain images. Image Vis Comp 7:83–94CrossRefGoogle Scholar
  34. Pinkerton H, Sparks RSJ (1976) The 1975 sub-terminal lavas, Mount Etna: a case history of the formation of a compound lava field. J Volcanol Geotherm Res 1(2):167–182CrossRefGoogle Scholar
  35. Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56:108–120Google Scholar
  36. Pollefeys M, Van Gool L (2002) From images to 3D models. Comm ACM 45(7):50–55CrossRefGoogle Scholar
  37. Pollefeys M, Gool LV, Vergauwen M, Verbiest F, Cornelis K, Tops J, Koch R (2004) Visual modeling with a hand-held camera. Int J Comp Vis 59(3):207–232CrossRefGoogle Scholar
  38. Snavely N, Seitz SM, Szeliski R (2006) Photo Tourism: Exploring image collections in 3D. ACM Trans Graphics 25(3):835–846. doi:10.1145/1141911.1141964 CrossRefGoogle Scholar
  39. Snavely N, Seitz SM, Szeliski R (2007) Modeling the world from internet photo collections. Int J Comp Vis 80(2):189–210CrossRefGoogle Scholar
  40. Snavely N, Garg R, Seitz SM, Szeliski R (2008) Finding Paths through the World's Photos. ACM Trans Graphics 27(3):15. doi:10.1145/1360612.1360614 CrossRefGoogle Scholar
  41. Sparks RSJ, Pinkerton H, Hulme G (1976) Classification and formation of lava levees on Mount Etna, Sicily. Geology 4:269–271CrossRefGoogle Scholar
  42. Vicari A, Herault A, Del Negro C, Coltelli M, Marsella M, Proietti C (2007) Modelling of the 2001 lava flow at Etna volcano by a Cellular Automata approach. Environ Model Softw 22(10):1465–1471CrossRefGoogle Scholar
  43. Wright R, Garbeil H, Harris AJL (2008) Using infrared satellite data to drive a thermo-rheological/stochastic lava flow emplacement model: A method for near-real-time volcanic hazard assessment. Geophys Res Lett 35:L19307. doi:10.1029/2008GL035228 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mike R. James
    • 1
  • L. Jane Applegarth
    • 1
  • Harry Pinkerton
    • 1
  1. 1.Lancaster Environment CentreLancaster UniversityLancasterUK

Personalised recommendations