Bulletin of Volcanology

, Volume 74, Issue 1, pp 163–186

Origins and energetics of maar volcanoes: examples from the ultrapotassic Sabatini Volcanic District (Roman Province, Central Italy)

  • Gianluca Sottili
  • Danilo M. Palladino
  • Mario Gaeta
  • Matteo Masotta
Research Article

Abstract

Maar volcanoes represent a common volcano type which is produced by the explosive interaction of magma with external water. Here, we provide information on a number of maars in the ultrapotassic Sabatini Volcanic District (SVD, Roman Province) as young as ∼90 ka. The SVD maars are characterised in terms of crater and ejecta ring morphologies, eruptive successions and magma compositions, in light of the local substrate settings, with the aim of assessing magma–water interaction conditions, eruption energetics and genetic mechanisms. Feeder magmas spanned the whole SVD differentiation trend from trachybasalts–shoshonites to phonolites. From the ejected lithic fragments from aquifer rocks, the range of depth of magma–water explosive interaction is estimated to have been mostly at ∼400–600 m below ground level, with a single occurrence of surficial interaction in palustrine–lacustrine environment. In particular, the interaction with external water may have triggered the explosive behaviour of poorly differentiated magmas, whereas it may have acted only as a late controlling factor of the degree of fragmentation and eruption style for the most differentiated magma batches during low-flux ascent in an incipiently fragmented state. Crater sizes, ejecta volumes and ballistic data allow a reconstruction of the energy budget of SVD maar-forming eruptions. Erupted tephra volumes from either monogenetic or polygenetic maars ranged 0.004–0.07 km3 during individual maar-forming eruptions, with corresponding total magma thermal energies of 8 × 1015–4 × 1017 J. Based on energy partitioning and volume balance of erupted magmas and lithic fractions vs. crater holes, we consider the different contributions of explosive excavation of the substrate vs. subsidence in forming the SVD maar craters. Following available models based on crater sizes, highly variable fractions (5–50%) of the magma thermal energies would have been required for crater excavation. It appears that subsidence may have played a major role in some SVD maars characterised by low lithic contents, whilst substrate excavation became increasingly significant with increasing degrees of aquifer fragmentation.

Keywords

Maar Eruption energy Crater excavation Crater subsidence Hydromagmatism Potassic volcanism 

References

  1. Auer A, Martin U, Németh K (2007) The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex—implications for vent geometry, subsurface stratigraphy and the palaeoenvironmental setting. J Volcanol Geotherm Res 159:225–245CrossRefGoogle Scholar
  2. Austin-Erickson A, Büttner R, Dellino P, Ort MH, Zimanowski B (2008) Phreatomagmatic explosions of rhyolitic magma: experimental and field evidence. J Geophys Res 113:B11201. doi:10.1029/2008JB005731 CrossRefGoogle Scholar
  3. Barberi F, Navarro JM, Rosi M, Santacroce R, Sbrana A (1988) Explosive interaction of magma with ground water: insights from xenoliths and geothermal drillings. Rend Soc Ital Mineral Petrol 43:901–926Google Scholar
  4. Boni C, Bono P, Capelli G (1986) Schema idrogeologico dell’Italia Centrale. Mem Soc Geol It 35:991–1012Google Scholar
  5. Büttner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from molten fuel coolant interaction experiments. J Geophys Res 107:2277–2290CrossRefGoogle Scholar
  6. Campobasso C, Cioni R, Salvati L, Sbrana A (1994) Geology and paleogeographic evolution of a peripheral sector of the Vico and Sabatini volcanic complex, between Civita Castellana and Mazzano Romano (Latium, Italy). Mem Descr Carta Geol It 49:277–290Google Scholar
  7. Campos Venuti M, Rossi RL (1996) Depositional facies in the Firiplaka rhyolitic tuff ring, Milos Island (Cyclades, Greece). Acta Vulcanol 8(2):47–63Google Scholar
  8. Carrasco-Núñez G, Ort MH, Romero C (2007) Evolution and hydrological conditions of a maar volcano (Atexcac crater, eastern Mexico). J Volcanol Geotherm Res 159:179–197CrossRefGoogle Scholar
  9. Cas RAF, Wright JV (1987) Volcanic successions modern and ancient. Allen and Unwin, London, p 528CrossRefGoogle Scholar
  10. Cioni R, Laurenzi MA, Sbrana A, Villa IM (1993) 40Ar/39Ar chronostratigraphy of the initial activity in the Sabatini volcanic complex (Italy). Boll Soc Geol It 112:251–263Google Scholar
  11. Civitelli G, Corda L (1993) The allochthonous succession. In: Di Filippo M (ed) Sabatini volcanic complex. Quad Ric Sci, vol 114. Progetto Finalizzato Geodinamica CNR, Rome, pp 19–28Google Scholar
  12. Colucci S, Palladino DM, Simei S, Sottili G (2010) Magmatic vs. hydromagmatic fragmentation and its bearing on the origin of widely dispersed ash deposits. Abs Cities on Volcanoes 6, 31 May–4 June 2010, Puerto de la Cruz, Tenerife, Spain, p 23Google Scholar
  13. Conticelli S, Francalanci L, Manetti P, Cioni R, Sbrana A (1997) Petrology and geochemistry of the ultrapotassic rocks from the Sabatini Volcanic District, central Italy: the role of evolutionary processes on the genesis of variably enriched alkaline magmas. J Volcanol Geotherm Res 75:107–136CrossRefGoogle Scholar
  14. Cundari A (1979) Petrogenesis of leucite-bearing lavas in the Roman volcanic region, Italy. The Sabatini Lavas. Contrib Mineral Petrol 70:9–21CrossRefGoogle Scholar
  15. De Astis G, Pappalardo L, Piochi M (2004) Procida volcanic history: new insights into the evolution of the Phlegrean Volcanic District (Campanian region, Italy). Bull Volcanol 66:622–641CrossRefGoogle Scholar
  16. Dellino P, La Volpe L (1995) Fragmentation versus transportation mechanisms in the pyroclastic sequence of Monte Pilato-Rocche Rosse (Lipari, Italy). J Volcanol Geotherm Res 64:211–231CrossRefGoogle Scholar
  17. Dellino P, La Volpe L (1996) Cluster analysis on ash particles morphology features to discriminate fragmentation dynamics in explosive eruptions. Acta Vulcanol 8–1:31–39Google Scholar
  18. de Rita D, Sposato A (1986) Correlazione tra eventi esplosivi e assetto strutturale del substrato sedimentario nel complesso vulcanico Sabatino. Mem Soc Geol It 35:727–733Google Scholar
  19. de Rita D, Zanetti G (1986) I centri esplosivi di Baccano e Stracciappe (Sabatini orientali, Roma): analogie e differenze della modellistica esplosiva in funzione del grado di interazione acqua/magma. Mem Soc Geol It 35:689–697Google Scholar
  20. de Rita D, Funiciello R, Corda L, Sposato A, Rossi U (1993) Volcanic units. In: Di Filippo M (ed) Sabatini volcanic complex. Quad Ric Sci, vol 114. Progetto Finalizzato Geodinamica CNR, Rome, pp 33–79Google Scholar
  21. Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80:319–328Google Scholar
  22. Di Filippo M, Toro B (1993) Gravimetric study of Sabatini area. In: Di Filippo M (ed) Sabatini volcanic complex. Quad Ric Sci, vol 114. Progetto Finalizzato Geodinamica CNR, Rome, pp 95–99Google Scholar
  23. Di Vito MA, Arienzo I, Braia G, Civetta L, D'Antonio M, Di Renzo V, Orsi G (2010) The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei Caldera (Italy). Bull Volcanol 73:295–320. doi:10.1007/s00445-010-0417-0 CrossRefGoogle Scholar
  24. Dolfi D, Palladino DM, Trigila R, Zanon V (2011) Aspetti chimico-petrografici e geocronologici delle vulcaniti della Media Valle Latina. In: Centamore E (ed) Note Illustrative della Carta Geologica d’Italia, Foglio 402 “Ceccano” (in press)Google Scholar
  25. Ernst GGJ, Carey SN, Bursik MI, Sparks RSJ (1996) Sedimentation from turbulent jets and plumes. J Geophys Res 101:5575–5589CrossRefGoogle Scholar
  26. Fagents SA, Wilson L (1993) Explosive volcanic eruptions, VII. The ranges of pyroclasts ejected in transient volcanic explosions. Geophys Int 113:359–370CrossRefGoogle Scholar
  27. Fagents SA, Wilson L (1996) Numerical modeling of ejecta dispersal from transient volcanic explosions on Mars. Icarus 123:284–295CrossRefGoogle Scholar
  28. Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classifications and constraints for petrogenetic models. Earth Sci Rev 24:81–134CrossRefGoogle Scholar
  29. Franzini M, Leoni M, Saitta M (1972) A simple method to evaluate the matrix effects in X-ray fluorescence analysis. Spectrometry 1:151–154Google Scholar
  30. Funiciello R, Mariotti G, Parotto M, Preite-Martinez M, Tecce F, Toneatti R, Turi B (1979) Geology, mineralogy and stable isotope geochemistry of the Cesano geothermal field (Sabatini Mts. Volcanic system, Northern Latium, Italy). Geothermics 8:55–73CrossRefGoogle Scholar
  31. Gaeta M, Di Rocco T, Freda C (2009) Carbonate assimilation in open magmatic systems: the role of melt-bearing skarns and cumulate-forming processes. J Petrol 50:361–385CrossRefGoogle Scholar
  32. Giaccio B, Sposato A, Gaeta M, Marra F, Palladino DM, Taddeucci J, Barbieri M, Messina P, Rolfo MF (2007) Mid-distal occurrences of the Albano Maar pyroclastic deposits and their relevance for reassessing the eruptive scenarios of the most recent activity at the Colli Albani Volcanic District, Central Italy. Quat Int 171–172:160–178CrossRefGoogle Scholar
  33. Giardini M (2007) Late Quaternary vegetation history at Stracciacappa (Rome, central Italy). Vegetation History and Archaeobotany 16(4):301–316CrossRefGoogle Scholar
  34. Goto A, Taniguchi H, Yoshida M, Ohba T, Oshima H (2001) Effect of explosions energy and depth to the formation of blast wave and crater: field explosion experiment for the understanding of volcanic explosion. Geophys Res Lett 28:4287–4290CrossRefGoogle Scholar
  35. Head JW, Sparks RSJ, Bryan WB, Walker GPL, Greely R, Whitford-Stark JL, Guest JE, Wood CA, Shultz PH, Carr MH (1981) Distribution and morphology of basalt deposits on planets. In: Project BVS (ed) Basaltic volcanism on the terrestrial planets. Pergamon, New York, pp 701–800Google Scholar
  36. Heiken G, Wohletz K (1985) Volcanic ash. University of California Press, Berkeley, 246 ppGoogle Scholar
  37. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462CrossRefGoogle Scholar
  38. Houghton BF, Wilson CJN, Rosenberg MD, Smith IEM, Parker RJ (1996) Mixed deposits of complex magmatic and phreatomagmatic volcanism: an example from Crater Hill, Auckland, New Zealand. Bull Volcanol 58:59–66CrossRefGoogle Scholar
  39. Houghton BF, Wilson CJN, Smith RT, Gilbert JS (2000) Phreatoplinian eruptions. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 513–525Google Scholar
  40. Kano K, Ohguchi T (2009) Intra-crater deposits of the Toga tuff ring, Oga Peninsula, NE Japan. Sed Geol 220:204–217CrossRefGoogle Scholar
  41. Kano K, Ohguchi T, Hayashi S, Uto K, Danhara T (2002) Toga volcano: an alkali-rhyolite tuff-ring in the western end of Oga Peninsula, NE Japan. Bull Volcanol Soc Japan 47(5):373–396Google Scholar
  42. Karner DB, Marra F, Renne P (2001) The history of the Monti Sabatini and Alban Hills volcanoes: groundwork for assessing volcanic–tectonic hazards for Rome. J Volcanol Geotherm Res 107:185–219CrossRefGoogle Scholar
  43. Laurenzi MA, Villa IM (1987) 40Ar/39Ar chronostratigraphy of the Vico ignimbrites. Per Mineral 56:285–293Google Scholar
  44. Lorenz V (1971) An investigation of volcanic depressions. Part IV. Origin of Hole-in-the-Ground, a maar in Central Oregon (Geological, geophysical and energy investigations). Prog Rep NGR-38-003-012, NASA, Houston, TX, 113 ppGoogle Scholar
  45. Lorenz V (1973) On the formation of maars. Bull Volcanol 37:183–204CrossRefGoogle Scholar
  46. Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff-rings. Bull Volcanol 48:265–274CrossRefGoogle Scholar
  47. Lorenz V (2003) Maar–diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. Geolines—J Geol Inst AS Czech Republic 15:72–83Google Scholar
  48. Lorenz V (2007) Syn- and posteruptive hazards of maar–diatreme volcanoes. J Volcanol Geotherm Res 159:285–312CrossRefGoogle Scholar
  49. Mariotti G (1993) Basal carbonate succession. In: Di Filippo M (ed) Sabatini volcanic complex. Quad Ric Sci, vol 114. Progetto Finalizzato Geodinamica CNR, Rome, pp 11–18Google Scholar
  50. Masotta M, Gaeta M, Gozzi F, Marra F, Palladino DM, Sottili G (2010) H2O- and temperature-zoning in magma chambers: the example of the Tufo Giallo della Via Tiberina eruptions (Sabatini Volcanic District, central Italy). Lithos 118:119–130CrossRefGoogle Scholar
  51. Mastin LG (1991) The roles of magma and groundwater in the phreatic eruptions at Inyo Craters, Long Valley Caldera, California. Bull Volcanol 53:579–596CrossRefGoogle Scholar
  52. Mastrolorenzo G, Brachi L, Canzanella A (2001) Vesicularity of various types of pyroclastic deposits of Campi Flegrei volcanic field: evidence of analogies in magma rise and vesiculation mechanisms. J Volcanol Geotherm Res 109:41–53CrossRefGoogle Scholar
  53. Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Am Mineral 83:36–42Google Scholar
  54. Nappi G, Mattioli M (2003) Evolution of the Sabatinian Volcanic District (central Italy) as inferred by stratigraphic successions of its northern sector and geochronological data. Per Mineral 72:79–102Google Scholar
  55. Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. Geol Soc Am Spec Pap 470:43–66CrossRefGoogle Scholar
  56. Németh K, Cronin S, Haller M, Brenna M, Csillag G (2010) Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: “soft-substrate” to “combined” aquifer controlled phreatomagmatism in intraplate volcanic fields. Centr Eur J Geosci 2(3):339–361CrossRefGoogle Scholar
  57. Ollier CD (1967) Maars: their characteristics, varieties and definition. Bull Volcanol 31:45–75CrossRefGoogle Scholar
  58. Palladino DM, Taddeucci J (1998) The basal ash deposit of the Sovana Eruption (Vulsini Volcanoes, central Italy): the product of a dilute pyroclastic density current. J Volcanol Geotherm Res 87:233–254CrossRefGoogle Scholar
  59. Palladino DM, Gaeta M, Marra F (2001) A large K-foiditic hydromagmatic eruption from the early activity of the Alban Hills VolcanicDistrict (Italy). Bull Volcanol 63:345–359CrossRefGoogle Scholar
  60. Palladino DM, Simei S, Kyriakopoulos K (2008) On magma fragmentation by conduit shear stress: evidence from the Kos Plateau Tuff, Aegean Volcanic Arc. J Volcanol Geotherm Res 178:807–817CrossRefGoogle Scholar
  61. Palladino DM, Simei S, Sottili G, Trigila R (2010) Integrated approach for the reconstruction of stratigraphy and geology of Quaternary volcanic terrains: an application to the Vulsini Volcanoes (central Italy). In Groppelli G, Viereck L (eds) Stratigraphy and geology in volcanic areas. Geol Soc Am Spec Pap 464, pp 66–84Google Scholar
  62. Peccerillo A, Federico M, Barbieri M, Brilli M, Wu TW (2010) Interaction between ultrapotassic magmas and carbonate rocks: evidence from geochemical and isotopic (Sr, Nd, O) compositions of granular lithic clasts from the Alban Hills Volcano, Central Italy. Geochim Cosmochim Acta 74:2999–3022CrossRefGoogle Scholar
  63. Ross P-S, White JDL, Zimanowski B, Büttner R (2008) Multiphase flow above explosion sites in debris-filled volcanic vents: insights from analogue experiments. J Volcanol Geotherm Res 178:104–112CrossRefGoogle Scholar
  64. Ross P-S, Delpit S, Haller MJ, Németh K, Corbella H (2011) Influence of the substrate on maar–diatreme volcanoes—an example of a mixed setting from the Pali Aike volcanic field, Argentina. J Volcanol Geotherm Res 201:253–271. doi:10.1016/j.jvolgeores.2010.07.018 CrossRefGoogle Scholar
  65. Sahagian DL, Proussevitch AA (1998) 3D particle size distributions from 2D observations: stereology for natural applications. J Volcanol Geotherm Res 84:173–196CrossRefGoogle Scholar
  66. Sato H, Taniguchi H (1997) Relationship between crater size and ejecta volume of recent magmatic and phreato-magmatic eruptions: implications for energy partitioning. Geophys Res Lett 24:205–208CrossRefGoogle Scholar
  67. Scherillo A (1941) Studi su alcuni tufi gialli della regione sabazia orientale. Per Mineral 12:381–417Google Scholar
  68. Self S, Kienle J, Huot J-P (1980) Ukinrek Maars, Alaska. II. Deposits and formation of the 1977 craters. J Volcanol Geotherm Res 7:39–65CrossRefGoogle Scholar
  69. Sheridan MF, Wohletz KH (1983) Hydrovolcanism: basic considerations and review. J Volcanol Geotherm Res 17:1–29CrossRefGoogle Scholar
  70. Shimozuru D (1968) Discussion on the energy partition of volcanic eruption. Bull Volcanol 32:383–394CrossRefGoogle Scholar
  71. Sohn YK, Cough SK (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36:837–855CrossRefGoogle Scholar
  72. Sottili G, Palladino DM, Zanon V (2004) Plinian activity during the early eruptive history of the Sabatini Volcanic District, Central Italy. J Volcanol Geotherm Res 135:361–379CrossRefGoogle Scholar
  73. Sottili G, Taddeucci J, Palladino DM, Gaeta M, Scarlato P, Ventura G (2009) Sub-surface dynamics and eruptive styles of maars in the Colli Albani Volcanic District, Central Italy. J Volcanol Geotherm Res 180:189–202CrossRefGoogle Scholar
  74. Sottili G, Palladino DM, Marra F, Jicha B, Karner DB, Renne P (2010a) Geochronology of the most recent activity in the Sabatini Volcanic District, Roman Province, central Italy. J Volcanol Geotherm Res 196:20–30CrossRefGoogle Scholar
  75. Sottili G, Taddeucci J, Palladino DM (2010b) Constraints on magma–wall rock thermal interaction during explosive eruptions from textural analysis of cored bombs. J Volcanol Geotherm Res 192:27–34CrossRefGoogle Scholar
  76. Sparks RSJ, Walker GPL (1977) The significance of vitric-enriched air-fall ashes associated with crystal-enriched ignimbrites. J Volcanol Geotherm Res 2:329–341CrossRefGoogle Scholar
  77. Taddeucci J, Sottili G, Palladino DM, Ventura G, Scarlato P (2010) A note on maar eruption energetics: current models and their application. Bull Volcanol 72:75–83CrossRefGoogle Scholar
  78. Trigila R, Battaglia M, Manga M (2007) An experimental facility for investigating hydromagmatic eruptions at high-pressure and high-temperature with application to the importance of magma porosity for magma–water interaction. Bull Volcanol 69:365–372CrossRefGoogle Scholar
  79. Valentine GA, Shufelt NL, Hintz ARL (2011) Models of maar volcanoes, Lunar Crater (Nevada, USA). Bull Volcanol. doi:10.1007/s00445-011-0451-6
  80. Walker GPL, Croasdale R (1972) Characteristics of some basaltic pyroclastics. Bull Volcanol 35:303–317CrossRefGoogle Scholar
  81. White JDL, Houghton B (2000) Surtseyan and related phreatomagmatic eruptions. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 495–513Google Scholar
  82. White JDL, Ross P-S (2011) Maar–diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29. doi:10.1016/j.jvolgeores.2011.01.010 CrossRefGoogle Scholar
  83. Wohletz KH (1986) Explosive magma–water interaction: thermodynamics, explosive mechanisms, and field studies. Bull Volcanol 48:248–264CrossRefGoogle Scholar
  84. Wohletz KH (2002) Water/magma interaction: some theory and experiments on peperite formation. J Volcanol Geotherm Res 114:19–35CrossRefGoogle Scholar
  85. Wohletz KH (2003) Water/magma interaction: physical considerations for the deep submarine environment. In: White JDL, Smellie JL, Clague DA (eds) Explosive subaqueous volcanism. American Geophysical Union, Washington, pp 25–50CrossRefGoogle Scholar
  86. Wohletz KH, McQueen RG (1984) Volcanic and stratospheric dust-like particles produced by experimental water–melt interactions. Geology 12:591–594CrossRefGoogle Scholar
  87. Wohletz KH, Sheridan MF (1983) Hydrovolcanic explosions II: evolution of basaltic tuff rings and tuff cones. Am J Sci 283:385–413CrossRefGoogle Scholar
  88. Yokoo A, Taniguchi H, Goto A, Oshima H (2002) Energy and depth of Usu 2000 phreatic explosions. Geophys Res Lett 29:2195. doi:10.1029/2002GL015728 CrossRefGoogle Scholar
  89. Yokoyama I, de la Cruz-Reyna S, Espindola JM (1992) Energy partition in the 1982 eruption of El Chichon volcano, Chiapas, Mexico. J Volcanol Geotherm Res 51:1–21CrossRefGoogle Scholar
  90. Zimanowski B, Büttner R (2003) Phreatomagmatic explosions in subaqueous volcanism. In: White JDL, Smellie JL, Clague DA (eds) Explosive subaqueous volcanism. American Geophysical Union, Washington, pp 51–60CrossRefGoogle Scholar
  91. Zimmer BW, Riggs NR, Carrasco-Núñez G (2010) Evolution of tuff ring–dome complex: the case study of Cerro Pinto, eastern Trans-Mexican Volcanic Belt. Bull Volcanol 72:1223–1240. doi:10.1007/s00445-010-0391-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Gianluca Sottili
    • 1
    • 2
  • Danilo M. Palladino
    • 1
  • Mario Gaeta
    • 1
  • Matteo Masotta
    • 1
  1. 1.Dipartimento di Scienze della TerraSapienza-Università di RomaRomeItaly
  2. 2.Istituto di Geologia Ambientale e Geoingegneria-CNRRomeItaly

Personalised recommendations