Bulletin of Volcanology

, Volume 74, Issue 1, pp 135–141 | Cite as

Eddy covariance imaging of diffuse volcanic CO2 emissions at Mammoth Mountain, CA, USA

  • Jennifer L. Lewicki
  • George E. Hilley
  • Laura Dobeck
  • Bruno D. V. Marino
Research Article

Abstract

Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO2 fluxes and quantify CO2 emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO2 flux were made during September–October 2010 and ranged from 85 to 1,766 g m−2 day−1. Comparative maps of soil CO2 flux were simulated and CO2 emission rates estimated from three accumulation chamber (AC) CO2 flux surveys. Least-squares inversion of measured eddy covariance CO2 fluxes and corresponding modeled source weight functions recovered 58–77% of the CO2 emission rates estimated based on simulated AC soil CO2 fluxes. Spatial distributions of modeled surface CO2 fluxes based on EC and AC observations showed moderate to good correspondence (R2 = 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO2 emissions over relatively large areas.

Keywords

Eddy covariance Carbon dioxide flux Volcano monitoring Accumulation chamber Least-squares inversion 

References

  1. Allard P, Carbonelle J, Dajlevic D, Le Bronec J, Morel P, Robe MC, Maurenas JM, Faivre-Pierret R, Martin D, Sabroux JC, Zettwoog P (1991) Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351:387–391CrossRefGoogle Scholar
  2. Anderson DE, Farrar CD (2001) Eddy covariance measurement of CO2 flux to the atmosphere from an area of high volcanogenic emissions, Mammoth Mountain, California. Chem Geol 177:31–42CrossRefGoogle Scholar
  3. Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present, and future. Glob Chang Biol 9:479–492CrossRefGoogle Scholar
  4. Baubron JC, Allard P, Toutain JP (1990) Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature 344:51–53CrossRefGoogle Scholar
  5. Chiodini G, Cioni GR, Guidi M, Raco B, Marini L (1998) Soil CO2 flux measurements in volcanic and geothermal areas. Appl Geochem 13:543–552CrossRefGoogle Scholar
  6. Deutsch CV, Journel AG (1998) GSLIB: Geostatistical software library and user’s guide. Oxford Univ. Press, New YorkGoogle Scholar
  7. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105CrossRefGoogle Scholar
  8. Giammanco S, Gurrieri S, Valenza M (1995) Soil CO2 degassing on Mt Etna (Sicily) during the period 1989–1993: discrimination between climatic and volcanic influences. Bull Volcanol 57:52–60Google Scholar
  9. Granieri D, Avino R, Chiodini C (2010) Carbon dioxide diffuse emission from the soil: ten years of observations at Vesuvio and Campi Flegrei (Pozzuoli), and linkages with volcanic activity. Bull Volcanol 72:103–118. doi:10.1007/s0445-009-0304-8 CrossRefGoogle Scholar
  10. Hammerle A, Haslwanter A, Schmitt M, Bahn M, Tappeiner U, Cernusca A, Wohlfahrt (2007) Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope. Boundary-Layer Meteorol 122:397–416. doi:10.1007/s10546-006-9109-x CrossRefGoogle Scholar
  11. Harris R, Segall P (1987) Detection of a locked zone at depth on the Parkfield, California segment of the San Andreas fault. J Geophys Res 92:27945–27962CrossRefGoogle Scholar
  12. Hernandez PA, Notsu K, Salazar JM, Mori T, Natale G, Okada H, Virgilli G, Shimoike Y, Sato M, Perez NM (2001) Carbon dioxide degassing by advective flow from Usu volcano, Japan. Science 2001:83–86CrossRefGoogle Scholar
  13. Horst TW, Weil JC (1992) Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound Layer Meteorol 2:279–296CrossRefGoogle Scholar
  14. Lewicki JL, Hilley GE (2011) Eddy covariance network design for mapping and quantification of surface CO2 leakage fluxes. Int J Greenhouse Gas Contr (in review)Google Scholar
  15. Lewicki JL, Hilley GE (2009) Eddy covariance mapping and quantification of surface CO2 leakage fluxes. Geophys Res Lett 36(21):L21802. doi:10.1029/2009GL040775 CrossRefGoogle Scholar
  16. Lewicki JL, Hilley GE, Tosha T, Aoyagi R, Yamamoto K, Benson SM (2007) Dynamic coupling of volcanic CO2 flow and wind at the Horseshoe Lake tree kill, Mammoth Mountain, California. Geophys Res Lett 34:L03401. doi:10.1029/2006GL028848 CrossRefGoogle Scholar
  17. Lewicki JL, Fischer ML, Hilley GE (2008) Six-week time series of eddy covariance CO2 flux at Mammoth Mountain, California: performance evaluation and role of meteorological forcing. J Volcanol Geotherm Res 171:178–190. doi:10.1016/j.jvolgeores.2007.11.029 CrossRefGoogle Scholar
  18. Lewicki JL, Hilley GE, Fischer ML, Pan L, Oldenburg CM, Dobeck L, Spangler L (2009) Eddy covariance observations of surface leakage during shallow subsurface CO2 releases. J Geophys Res 114:D12302. doi:10.1029/2008JD011297 CrossRefGoogle Scholar
  19. McGee KA, Gerlach TM (1998) Annual cycle of magmatic CO2 in a tree-kill soil at Mammoth Mountain, California: implications for soil acidification. Geology 26:463–466CrossRefGoogle Scholar
  20. McGee KA, Gerlach TM, Kessler R, Doukas MP (2000) Geochemical evidence for a magmatic CO2 degassing event at Mammoth Mountain, California, September – December 1997. J Geophys Res 105:8447–8456CrossRefGoogle Scholar
  21. Rogie JD, Kerrick DM, Sorey ML, Chiodini G, Galloway DL (2001) Dynamics of carbon dioxide emission at Mammoth Mountain, California. Earth Planet Sci Lett 188:535–541CrossRefGoogle Scholar
  22. Schmid HP (1997) Experimental design for flux measurements: matching scales of observations and fluxes. Agric For Meteorol 87(2–3):179–200CrossRefGoogle Scholar
  23. Thomas C, Foken T (2002) Re-evaluation of integral turbulence characteristics and their parameterizations. Proceedings of the 15th Symposium on Boundary Layers and Turbulence, Am Meteorol Soc, Wageningen, The Netherlands:129–132Google Scholar
  24. Toutain J-P, Sortino F, Baubron J-C, Richon P, Surono SS, Nonell A (2009) Structure and CO2 budget of Merapi volcano during inter-eruptive periods. Bull Volcanol 71:815–826. doi:10.1007/s00445-009-0266-x CrossRefGoogle Scholar
  25. Turnipseed AA, Anderson DE, Blanken PD, Baugh WM, Monson RK (2003) Airflows and turbulent flux measurements in mountainous terrain part 1. Canopy and local effects. Agric For Meteorol 119:1–21CrossRefGoogle Scholar
  26. Turnipseed AA, Anderson DE, Burns S, Blanken PD, Monson RK (2004) Airflows and turbulent flux measurements in mountainous terrain part 2. Mesoscale effects. Agric For Meteorol 125:187–205CrossRefGoogle Scholar
  27. Werner C, Wyngaard JC, Brantley SL (2000) Eddy-correlation measurement of hydrothermal gases. Geophys Res Lett 27:2925–2928CrossRefGoogle Scholar
  28. Werner C, Chiodini G, Voigt D, Caliro S, Avino R, Russo M, Brombach T, Wyngaard J, Brantley S (2003) Monitoring volcanic hazard using eddy covariance at Solfatara volcano, Naples, Italy. Earth Planet Sci Lett 210:561–577CrossRefGoogle Scholar
  29. Williams-Jones G, Stix J, Heiligmann M, Charland A, Sherwood Lollar B, Arner N, Garzón G, Barquero J, Fernandez E (2000) A model of diffuse degassing at three subduction-related volcanoes. Bull Volcanol 62:130–142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • Jennifer L. Lewicki
    • 1
  • George E. Hilley
    • 2
  • Laura Dobeck
    • 3
  • Bruno D. V. Marino
    • 4
  1. 1.Earth Sciences DivisionErnest Orlando Lawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Department of Geological and Environmental SciencesStanford UniversityStanfordUSA
  3. 3.Department of Chemistry and BiochemistryMontana State UniversityBozemanUSA
  4. 4.Planetary Emissions Management, Inc.CambridgeUSA

Personalised recommendations