Bulletin of Volcanology

, Volume 73, Issue 9, pp 1295–1309 | Cite as

Quantitative textural analysis of Vulcanian pyroclasts (Montserrat) using multi-scale X-ray computed microtomography: comparison with results from 2D image analysis

  • Thomas GiachettiEmail author
  • A. Burgisser
  • L. Arbaret
  • T. H. Druitt
  • K. Kelfoun
Research Article


X-ray computed microtomography (μCT) was carried out on four pyroclasts from the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat. Three-dimensional data from multiple image stacks with different spatial resolutions (0.37, 4–8, and 17.4 μm px−1) were combined to generate size distributions of vesicles, inter-vesicle throats, crystals, and Fe–Ti oxides over a 3.4–860-μm size range, and to compare the results with those obtained by 2D image analysis on the same samples. Qualitative textural observations are in good agreement with those made in 2D, but μCT provides better resolution of textural features and spatial relationships. Calculation of size distributions requires automated decoalescence of the connected vesicle network. Problems related to this process, in part due to the high porosity of pumice, result in potential artefacts in the calculated size distributions, which are discussed in detail. The main modes of the 3D vesicle volume distributions are systematically shifted to larger sizes compared with those of the 2D distributions. Sample total vesicularities obtained in 3D are within 13 vol.% of those found in 2D, and within 10 vol.% of those measured by He-pycnometry. Total number densities of vesicles and Fe–Ti oxides from the two methods are consistent only to the first order, 3D values ranging from 37% to 309% of those in 2D. Vesicle coalescence, investigated by examining inter-vesicle throat size distributions, occurred in all pyroclasts between neighbouring vesicles of many sizes. The larger the vesicle, the more connected it is.


X-ray computed microtomography Vesicle size distribution Vesicle number density Coalescence Vulcanian explosions Soufrière Hills Volcano Montserrat 



The project was partly funded by the French Agence Nationale de la Recherche (ANR-EXPLANT, Contract No ANR-05-CATT-003 to C. Martel), and partly by ERC grant 202844 under the European FP7. The study benefited from discussions with Jonathan Castro and Wim Degruyter. Marco Stampanoni, Emmanuel Le Trong and David Picard helped us at the Swiss Light Source, and Armelle Basillais acquired the IPROS stacks at the Institut de Prévention et de Recherche sur l’Ostéoporose (IPROS), Orléans. We thank Thomas Shea and an anonymous reviewer for their thoughtful and constructive reviews of the manuscript.


  1. Adams NK, Houghton BF, Hildreth W (2006) Abrupt transitions during sustained explosive eruptions: examples from the 1912 eruption of Novarupta, Alaska. Bull Volcanol 69:189–206CrossRefGoogle Scholar
  2. Barclay J, Rutherford MJ, Carroll MR, Murphy MD, Devine JD, Gardner J, Sparks RSJ (1998) Experimental phase equilibria constraints on pre-eruptive storage conditions of the Soufrière Hills magma. Geophys Res Lett 25(18):3437–3440CrossRefGoogle Scholar
  3. Blower JD, Keating JP, Mader HM, Phillips JC (2001) Inferring degassing processes from vesicle size distributions. Geophys Res Lett 28:347–350Google Scholar
  4. Brun F, Mancini L, Kasae P, Favretto S, Dreossi D, Tromba G (2010) Pore3D: a software library for quantitative analysis of porous media. Nucl Instr Meth Phys Res A 615:326–332CrossRefGoogle Scholar
  5. Burgisser A, Poussineau S, Arbaret L, Druitt TH, Giachetti T, Bourdier J-L (2010) Pre-explosive conduit conditions of the 1997 Vulcanian explosions at Soufrière Hills Volcano (Montserrat): I. pressure and vesicularity distributions. J Volcanol Geotherm Res 194(1–3):27–41. doi: 10.1016/j.jvolgeores.2010.01.008 CrossRefGoogle Scholar
  6. Burgisser A, Arbaret L, Druitt TH, Giachetti T (2011). Pre-explosive conduit conditions of the 1997 Vulcanian explosions at Soufrière Hills Volcano, Montserrat: II. Overpressure and depth distributions. J. Volcanol. Geotherm. Res. doi:  10.1016/j.jvolgeores.2010.11.014
  7. Cheng HC, Lemlich R (1983) Errors in the measurement of bubble-size distribution in foam. Ind Eng Chem Fundam 22:105–109CrossRefGoogle Scholar
  8. Clarke AB, Neri A, Voight B, Macedonio G, Druitt TH (2002). Computational modelling of the transient dynamics of the August 1997 vulcanian explosions at Soufrière Hills Volcano, Montserrat; influence of initial conduit conditions on near-vent pyroclastic dispersal. In: Druitt TH, Kokelaar BP (ed) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geological Society of London Memoir, 21: 319–348Google Scholar
  9. Clarke AB, Stephens S, Teasdale R, Sparks RSJ, Diller K (2007) Petrologic constraints on the decompression history of magma prior to Vulcanian explosions at the Soufrière Hills volcano, Montserrat. J Volcanol Geotherm Res 161:261–274CrossRefGoogle Scholar
  10. Costa A (2006) Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophysical Research Letters 33(2)Google Scholar
  11. Degruyter W, Bachmann O, Burgisser A (2009) Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc). Bull Volcanol. doi: 10.1007/s00445-009-0302-x Google Scholar
  12. Diller K, Clarke AB, Voight B, Neri A (2006) Mechanisms of conduit plug formation: implications for vulcanian explosions. Geophys Res Lett 33:L20302CrossRefGoogle Scholar
  13. Druitt TH, Young SR, Baptie BJ, Bonadonna C, Calder ES, Clarke A, Cole PD, Harford CL, Herd RA, Lockett R, Ryan G, Voight B (2002) Episodes of cyclic vulcanian explosive activity with fountain collapse at Soufrière Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (Eds.), The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geological Society of London Memoir (21):281–306Google Scholar
  14. Eichleberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602CrossRefGoogle Scholar
  15. Formenti Y, Druitt TH, Kelfoun K (2003) Characterisation of the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat, by video analysis. Bull Volcanol 65:587–605CrossRefGoogle Scholar
  16. Gaonac’h H, Lovejoy S, Stix J, Schertzer D (1996a) A scaling growth model for bubbles in basaltic flows. Earth Planet Sci Lett 139:395–409CrossRefGoogle Scholar
  17. Gaonac’h H, Stix J, Lovejoy S (1996b) Scaling effects on vesicles shape, size and heterogeneity of lavas from Mount Etna. J Volcanol Geotherm Res 74:131–153CrossRefGoogle Scholar
  18. Gaonac’h H, Lovejoy S, Schertzer D (2005) Scaling vesicle distributions and volcanic eruptions. Bull Volcanol 67(4):350–357CrossRefGoogle Scholar
  19. Gardner JE (2007) Heterogeneous bubble nucleation in highly viscous silicate melts during instantaneous decompression from high pressure. Chem Geol (236): 1–12Google Scholar
  20. Giachetti T, Druitt TH, Burgisser A, Arbaret L, Galven C (2010) Bubble nucleation and growth during the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat. J Volcanol Geotherm Res 193(3–4):215–231. doi: 10.1016/j.jvolgeores.2010.04.001 CrossRefGoogle Scholar
  21. Gonnermann HM, Manga M (2007) The fluid mechanics inside a volcano. Annu Rev Fluid Mech 39:321–356. doi: 10.1146/annurev.fluid.39.050905.110207 CrossRefGoogle Scholar
  22. Harford CL, Sparks RSJ, Fallick AE (2003) Degassing at the Soufrière Hills Volcano, Montserrat, recorded in matrix glass compositions. J Petrol 44:1503–1523CrossRefGoogle Scholar
  23. Kennedy B, Spieler O, Scheu B, Kueppers U, Taddeucci J, Dingwell DB (2005) Conduit implosion during Vulcanian eruptions. Geology 33:581–584CrossRefGoogle Scholar
  24. Ketcham RA (2005a) Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1(32–41)Google Scholar
  25. Ketcham RA (2005b) Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography. J Struct Geol 27(7):1217–1228CrossRefGoogle Scholar
  26. Klug C, Cashman KV (1994) Vesiculation of May 18, 1980, Mount St. Helens magma. Geology 22:468–472CrossRefGoogle Scholar
  27. Klug C, Cashman KV (1996) Permeability development in vesiculating magmas: implications for fragmentation. Bull Volcanol 58:87–100CrossRefGoogle Scholar
  28. Klug C, Cashman KV, Bacon CR (2002) Structure and physical characteristics of pumice from the climatic eruption of Mount Mazama (Crater Lake). Oregon Bull Volcanol 64:486–501CrossRefGoogle Scholar
  29. Lindquist WB (1999) 3DMA general users manual. SUNY-Stony Brook technical report SUNYSB-AMS-99-20Google Scholar
  30. Lindquist WB, Venkatarangan A (1999) Investigating 3D geometry of porous media from high resolution images. Phys Chem Earth Part Solid Earth Geodesy 24(7):593–599CrossRefGoogle Scholar
  31. Lindquist WB, Venkatarangan A, Dunsmuir J, Wong TF (2000) Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J Geophys Res Solid Earth 105(B9):21509–21527CrossRefGoogle Scholar
  32. Mason RM, Starostin AB, Melnik OE, Sparks RSJ (2006) From Vulcanian explosions to sustained explosive eruptions: the role of diffusive mass transfer in conduit flow dynamics. J Volcanol Geotherm Res 153:148–165CrossRefGoogle Scholar
  33. Melnik O, Sparks RSJ (2002) Modelling of conduit flow dynamics during explosive activity at Soufrière Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (ed) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc London Mem, vol. 21, 307–317Google Scholar
  34. Melnik O, Sparks RSJ (2005) Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma. J Volcanol Geotherm Res 143:53–68CrossRefGoogle Scholar
  35. Namiki A, Manga M (2008) Transition between fragmentation and permeable outgassing of low viscosity magmas. J Volcanol Geotherm Res 169(1–2):48–60. doi: 10-1016/j.jvolgeores.2007.07.020 CrossRefGoogle Scholar
  36. Polacci M, Baker DR, Mancini L, Tromba G, Zanini F (2006) Three-dimensional investigation of volcanic textures by X-ray microtomography and implications for conduit processes. Geophys Res Lett 33(13):L13312. doi: 10.1029/2006GL026241 CrossRefGoogle Scholar
  37. Polacci M, Baker DR, Liping B, Mancini L (2008) Large vesicles record pathways of degassing at basaltic volcanoes. Bull Volcanol 70:1023–1029CrossRefGoogle Scholar
  38. Polacci M, Burton MR, La Spina A, Murè F, Favretto S, Zanini F (2009a) The role of syn-eruptive vésiculation on explosive basaltic activity at Mt. Etna, Italy. J Volcanol Geotherm Res 179:265–269CrossRefGoogle Scholar
  39. Polacci M, Baker DR, Mancini L, Favretto S, Hill RJ (2009b) Vesiculation in magmas from Stromboli and implications for normal Strombolian activity and paroxysmal explosions in basaltic systems. J Geophys Res 114:B01206CrossRefGoogle Scholar
  40. Prodanovic M, Lindquist WB, Seright RS (2006) Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomographic imaging. J Colloid Interfacial Sci 298(1):282–297CrossRefGoogle Scholar
  41. Prodanovic M, Lindquist WB, Seright RS (2007) 3D image-based characterization of fluid displacement in a Berea core. Adv Water Res 30(2):214–226CrossRefGoogle Scholar
  42. Saar MO, Manga M (1999) Permeability–porosity relationship in vesicular baslts. Geophys Res Lett 26(1):111–114CrossRefGoogle Scholar
  43. Sahagian DL, Proussevitch AA (1998) 3D particle size distributions from 2D observations: stereology for natural applications. J Volcanol Geotherm Res 84:173–196CrossRefGoogle Scholar
  44. Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190:271–289CrossRefGoogle Scholar
  45. Shin H, Lindquist WB, Sahagian DL, Song S-R (2005) Analysis of the vesicular structure of basalts. Comput Geosci 31(4):473–487. doi: 10.1016/j.cageo.2004.10.013 CrossRefGoogle Scholar
  46. Song SR, Jones KW, Lindquist WB, Dowd BA, Sahagian DL (2001) Synchrotron X-ray computed microtomography: studies on vesiculated basaltic rocks. Bull Volcanol 63(4):252–263. doi: 10.1007/s004450100141 CrossRefGoogle Scholar
  47. Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3:1–37CrossRefGoogle Scholar
  48. Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210:1–15CrossRefGoogle Scholar
  49. Spieler O, Dingwell DB, Alidibirov M (2004a) Magma fragmentation speed: an experimental determination. J Volcanol Geotherm Res 129:109–123CrossRefGoogle Scholar
  50. Spieler O, Kennedy B, Kueppers U, Dingwell DB, Scheu B, Taddeucci J (2004b) The fragmentation threshold of pyroclastic rocks. Earth Planet Sci Lett 226(1–2):139–148CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Thomas Giachetti
    • 1
    • 2
    • 3
    • 5
    Email author
  • A. Burgisser
    • 4
  • L. Arbaret
    • 4
  • T. H. Druitt
    • 1
    • 2
    • 3
  • K. Kelfoun
    • 1
    • 2
    • 3
  1. 1.Université Blaise Pascal, Laboratoire Magmas et VolcansClermont UniversitéClermont-FerrandFrance
  2. 2.CNRS, UMR 6524, LMVClermont-FerrandFrance
  3. 3.IRD, R 163, LMVClermont-FerrandFrance
  4. 4.Institut des Sciences de la Terre d’OrléansUniversité d’OrléansOrléans Cedex 2France
  5. 5.GEOLABClermont-Ferrand Cedex 1France

Personalised recommendations