Bulletin of Volcanology

, Volume 73, Issue 9, pp 1245–1257 | Cite as

Strain-induced magma degassing: insights from simple-shear experiments on bubble bearing melts

  • Luca Caricchi
  • Anne Pommier
  • Mattia Pistone
  • Jonathan Castro
  • Alain Burgisser
  • Diego Perugini
Research Article

Abstract

Experiments have been performed to determine the effect of deformation on degassing of bubble-bearing melts. Cylindrical specimens of phonolitic composition, initial water content of 1.5 wt.% and 2 vol.% bubbles, have been deformed in simple-shear (torsional configuration) in an internally heated Paterson-type pressure vessel at temperatures of 798–848 K, 100–180 MPa confining pressure and different final strains. Micro-structural analyses of the samples before and after deformation have been performed in two and three dimensions using optical microscopy, a nanotomography machine and synchrotron tomography. The water content of the glasses before and after deformation has been measured using Fourier Transform Infrared Spectroscopy (FTIR). In samples strained up to a total of γ ∼ 2 the bubbles record accurately the total strain, whereas at higher strains (γ ∼ 10) the bubbles become very flattened and elongate in the direction of shear. The residual water content of the glasses remains constant up to a strain of γ ∼ 2 and then decreases to about 0.2 wt.% at γ ∼ 10. Results show that strain enhances bubble coalescence and degassing even at low bubble volume-fractions. Noticeably, deformation produced a strongly water under-saturated melt. This suggests that degassing may occur at great depths in the volcanic conduit and may force the magma to become super-cooled early during ascent to the Earth’s surface potentially contributing to the genesis of obsidian.

Keywords

Magma deformation Strain-induced degassing Bubble deformation Obsidian banding 

References

  1. Burgisser A, Gardner J. E. (2004). Experimental constraints on degassing and permeability in volcanic conduit flow. Bulletin of volcanology, 67(1), 42–56. doi:10.1007/s00445-004-0359-5.CrossRefGoogle Scholar
  2. Castro J, Manga M, Cashman K (2002) Dynamics of obsidian flows inferred from microstructures: insights from microlite preferred orientations. Earth Planet Sci Lett 199:211–226CrossRefGoogle Scholar
  3. Castro JM, Mercer C (2004) Microlite textures and volatile contents of obsidian from the Inyo volcanic chain. California Geophys Res Lett. doi:10.1029/2004GL020489 Google Scholar
  4. Castro JM, Dingwell DB (2009) Rapid ascent of rhyolitic magma at Chaiten volcano, Chile. Nature 461:780–U729CrossRefGoogle Scholar
  5. Castro JM, Manga M, Martin MC (2005) Vesiculation rates of obsidian domes inferred from H2O concentration profiles. Geophys Res Lett. doi:10.1029/2005GL024029 Google Scholar
  6. Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem Geophys Geosys. doi:10.1029/2008GC002138 Google Scholar
  7. Dingwell DB (1998) The glass transition in hydrous granitic melts. Phys Earth Planet Inter 107:1–8CrossRefGoogle Scholar
  8. Dingwell DB, Webb SL (1992) The fluxing effect of fluorine at magmatic temperatures (600-800-degrees-C)—a scanning calorimetric study. Amer Mineralog 77:30–33Google Scholar
  9. Gaillard F, Scaillet B, Pichavant M, Beny JL (2001) The effect of water and fO(2) on the ferric-ferrous ratio of silicic melts. Chem Geol 174:255–273CrossRefGoogle Scholar
  10. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134CrossRefGoogle Scholar
  11. Gonnerman HM, Manga M (2003) Flow banding in obsidians: a record of evolving textural heterogeneity during magma deformation. Earth Planet Sci Lett 236:135–147CrossRefGoogle Scholar
  12. Gonnerman HM, Manga M (2007) The fluid mechanics inside a volcano. Ann Rev Fluid Mech 39:321–356CrossRefGoogle Scholar
  13. Gottsmann J, Dingwell DB (2001) The cooling of frontal flow ramps: a calorimetric study on the rocche rosse rhyolite flow, Lipari, Aeolian Islands, Italy. Terra Nova 13:157–164CrossRefGoogle Scholar
  14. Gottsmann J, Dingwell DB (2002) The thermal history of a spatter-fed lava flow: the 8-ka pantellerite flow of Mayor Island, New Zealand. Bull Volcanol 64:410–422CrossRefGoogle Scholar
  15. Hammer JE (2008) Experimental studies of the kinetics and energetics of magma crystallization. Rev Mineral Geochem 69:9–59CrossRefGoogle Scholar
  16. Hashin Z, Shtrikman S (1962) A variational approach to theory of effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131CrossRefGoogle Scholar
  17. Hess KU, Cordonnier B, Lavallee Y, Dingwell DB (2008) Viscous heating in rhyolite: an in situ experimental determination. Earth Planet Sci Lett 275:121–126CrossRefGoogle Scholar
  18. Iacono-Marziano G, Schmidt BC, Dolfi D (2007) Equilibrium and disequilibrium degassing of a phonolitic melt (vesuvius AD 79 "white pumice") simulated by decompression experiments. J Volcanol Geotherm Res 161:151–164CrossRefGoogle Scholar
  19. IAPWS (1997) Revised release on the IAPS formulation 1985 for the viscosity of ordinary water substance. International Association for the Properties of Water and Steam, Erlangen, 15Google Scholar
  20. Ketcham RA (2005) Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1:32–41CrossRefGoogle Scholar
  21. Lensky NG, Lyakhovsky V, Navon O (2001) Radial variations of melt viscosity around growing bubbles and gas overpressure in vesiculating magmas. Earth Planet Sci Lett 186:1–6CrossRefGoogle Scholar
  22. Llewellin EW, Manga A (2005) Bubble suspension rheology and implications for conduit flow. J Volcanol Geotherm Res 143:205–217CrossRefGoogle Scholar
  23. Llewellin EW, Mader HM, Wilson SDR (2002) The rheology of a bubbly liquid. Proc R Soc Lond A 458:987–1016CrossRefGoogle Scholar
  24. Manga M, Loewenberg M (2001) Viscosity of magmas containing highly deformable bubbles. J Volcanol Geotherm Res 105:19–24CrossRefGoogle Scholar
  25. Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Amer Mineralog 83:36–42Google Scholar
  26. Mysen BO, Yamashita S, Chertkova N (2008) Solubility and solution mechanisms of NOH volatiles in silicate melts at high pressure and temperature-amine groups and hydrogen fugacity. Amer Mineralog 93:1760–1770CrossRefGoogle Scholar
  27. Okumura S, Nakamura M, Tsuchiyama A, Nakano T, Uesugi K (2008) Evolution of bubble microstructure in sheared rhyolite: formation of a channel-like bubble network. J Geophys Res. doi:10.1029/2007JB005362 Google Scholar
  28. Okumura S, Nakamura M, Takeuchi S, Tsuchiyama A, Nakano T, Uesugi K (2009) Magma deformation may induce non-explosive volcanism via degassing through bubble networks. Earth Planet Sci Lett 281:267–274CrossRefGoogle Scholar
  29. Paterson MS, Olgaard DL (2000) Rock deformation tests to large shear strains in torsion. J Struct Geol 22:1341–1358CrossRefGoogle Scholar
  30. Rolandi G, Mastrolorenzo G, Barrella AM, Borrelli A (1993) The avellino plinian eruption of somma-vesuvius (3760 Y Bp)—the progressive evolution from magmatic to hydromagmatic style. J Volcanol Geotherm Res 58:67–88CrossRefGoogle Scholar
  31. Rust AC, Manga M, Cashman KV (2003) Determining flow type, shear rate and shear stress in magmas from bubble shapes to orientations. J Volcanol Geotherm Res 122:111–132CrossRefGoogle Scholar
  32. Signorelli S, Vaggelli G, Romano C (1999) Pre-eruptive volatile (H2O, F, Cl and S) contents of phonolitic magmas feeding the 3550-year old Avellino eruption from vesuvius, southern Italy. J Volcanol Geotherm Res 93:237–256CrossRefGoogle Scholar
  33. Stampanoni M, Groso A, Isenegger A, Mikuljan G, Chen Q, Bertrand A, Henein S, Betemps R, Frommherz U, Bohler P, Meister D, Lange M, Abela R (2006) Trends in synchrotron-based tomographic imaging: the SLS experience. Dev X-Ray Tomogr V 6318:U199–U212Google Scholar
  34. Stasiuk MV, Barclay J, Carroll MR, Jaupart C, Ratte JC, Sparks RSJ, Tait SR (1996) Degassing during magma ascent in the Mule Creek vent (USA). Bull Volcanol 58:117–130CrossRefGoogle Scholar
  35. Terzaghi K (1945) Stress conditions for the failure of saturated concrete and rock. Proc Am Soc Test Mater 45:777–792Google Scholar
  36. Thomas ME, Petford N, Bromhead EN (2004) Volcanic rock-mass properties from Snowdonia to Tenerife: implications for volcano edifice strength. J Geol Soc 161:939–946CrossRefGoogle Scholar
  37. Tuffen H, Dingwell DB (2005) Fault textures in volcanic conduits: evidence for seismic trigger mechanisms during silicic eruptions. Bull Volcanol 67:370–387CrossRefGoogle Scholar
  38. Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31:1089–1092CrossRefGoogle Scholar
  39. Yoshimura S, Nakamura M (2008) Diffusive dehydration and bubble resorption during open-system degassing of rhyolitic melts. J Volcanol Geotherm Res 178:72–80CrossRefGoogle Scholar
  40. Zhang YX, Stolper EM, Wasserburg GJ (1991) Diffusion of water in rhyolitic glasses. Geochim Cosmochim Acta 55:441–456CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Luca Caricchi
    • 1
    • 2
  • Anne Pommier
    • 2
    • 3
  • Mattia Pistone
    • 4
  • Jonathan Castro
    • 2
    • 5
  • Alain Burgisser
    • 2
  • Diego Perugini
    • 6
  1. 1.Department of Earth SciencesUniversity of BristolBristolUnited Kingdom
  2. 2.Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences de l’Univers (INSU), Université d’Orléans, Université François Rabelais–ToursInstitut des Sciences de la Terre d’OrléansOrléans cedex 2France
  3. 3.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Institute for Geochemistry and PetrologyETH ZurichZurichSwitzerland
  5. 5.School of GeosciencesMonash UniversityMelbourneAustralia
  6. 6.Department of Earth SciencesUniversity of PerugiaPerugiaItaly

Personalised recommendations